Neumann边界条件下Lp-Poincaré不等式最优常数的估计

靳荷艳

数学学报 ›› 2014, Vol. 57 ›› Issue (4) : 665-674.

PDF(380 KB)
PDF(380 KB)
数学学报 ›› 2014, Vol. 57 ›› Issue (4) : 665-674. DOI: 10.12386/A2014sxxb0061
论文

Neumann边界条件下Lp-Poincaré不等式最优常数的估计

    靳荷艳
作者信息 +

Estimation of the Optimal Constants in the Lp-Poincaré Inequalities under Neumann Boundary Condition

    He Yan JIN
Author information +
文章历史 +

摘要

本文考虑在Neumann 边界条件下,当π 为有限测度时,对不等式 π(|f-π(|f|p-2f)|p)≤āpπ(a|f'|p),fDDp)中的最优常数āp的估计. 通过采用分割的方法可转化 为Dirichlet 边界条件的情况,进而得到了上下界的估计. 并考虑当π为无穷测度时,在 Neumann 边界条件下不等式 π(|f|p)≤?pπ(a|f'|p),fDDp) 中常数?p的上下界,给出了变分公式估计及显式估计.

Abstract

We consider in this paper the estimation of the optimal constant āp in π(|f-π(|f|p-2f)|p)≤āpπ(a|f'|p),fD(Dp) under Neumann boundary condition when π is a finite measure. We can get the estimations of upper and lower bounds by using cutting method to transform this problem to Dirichlet boundary condition. When π is infinite measure, we consider the upper and lower bound of the constant in π(|f|p)≤?pπ(a|f'|p),fD(Dp) under Neumann boundary condition. We give the variational formula and the explicit estimation.

关键词

Lp-Poincaré / 不等式 / Neumann 边界条件 / 变分公式 / 显式界

Key words

Lp-Poincaré / inequality / Neumann boundary condition / variational formula / explicit boundary

引用本文

导出引用
靳荷艳. Neumann边界条件下Lp-Poincaré不等式最优常数的估计. 数学学报, 2014, 57(4): 665-674 https://doi.org/10.12386/A2014sxxb0061
He Yan JIN. Estimation of the Optimal Constants in the Lp-Poincaré Inequalities under Neumann Boundary Condition. Acta Mathematica Sinica, Chinese Series, 2014, 57(4): 665-674 https://doi.org/10.12386/A2014sxxb0061

参考文献

[1] Chen M. F., Analytic proof of dual variational formula for the first eigenvalue in dimension one, Sci. Sin. A, 1999, 42(8): 805-815.

[2] Chen M. F., Eigenvalues, Inequalities, and Ergodic Theory, Springer, Berlin, Heidelberg, New York, 1992 (first edition), 2004 (second edition).

[3] Chen M. F., Explicit bounds of the first eigenvalue, Sci. China, Ser. A, 2000, 43(10): 1051-1059.

[4] Chen M. F., Exponential L2-convergence and L2-spectral gap for Markov processes, Acta Math. Sin. New Ser., 1991, 7(1): 7-19.

[5] Chen M. F., From Markov Chains to Non-Equilibrium Particle Systems, World Scientific, Second Edition, Singapore, 2004.

[6] Chen M. F., Variational formulae and approximation theorems for the first eigenvalue in dimension one, Sci. China, Ser. A, 2001, 31(1): 28-36 (Chinese Edition); 2001, 44(4): 409-418 (English Edition).

[7] Chen M. F., Wang F. Y., Estimation of spectral gap for elliptic operators, Trans. Amer. Math. Soc., 1997, 349(3): 1239-1267.

[8] Chen M. F., Zhang Y. H., Zhao X. L., Dual variational formulae for the first Dirichlet eigenvalue on half-line, Sci. China, Ser A, 2003, 33(4): 371-383 (Chinese Edition); 2003, 46(6): 847-861 (English Edition).

[9] Jin H. Y., Estimation of the optimal constants in the Lp-Poincaré inequalities on the half line, Acta Mathematica Sinica, Chinese Series, 2012, 55(1): 169-178.

[10] Liggett T. M., Exponential L2 convergence of attractive reversible nearest particle systems, Ann. Prob., 1989, 17: 403-432.

[11] Liggett T. M., L2 rates of convergence for attractive reversible nearest particle systems: the critical case, Ann. Prob., 1991, 19(3): 935-959.

[12] Maz'ja V. G., Sobolev Spaces, Springer-Verlag, Berlin, 1985.

[13] Muckenhoupt B., Hardy's inequality with weights, Studia Math., 1972, 34: 31-38.

[14] Peng J. G., Xu Z. B., On asymptotic behaviors of nonlinear semigroup of Lipschitz operators with applications, Acta Mathematica Sinica, Chinese Series, 2002, 45(6): 1099-1106.
PDF(380 KB)

256

Accesses

0

Citation

Detail

段落导航
相关文章

/