随机反应扩散方程的Lp-随机吸引子

刘林芳, 尹福其

数学学报 ›› 2014, Vol. 57 ›› Issue (4) : 751-766.

PDF(615 KB)
PDF(615 KB)
数学学报 ›› 2014, Vol. 57 ›› Issue (4) : 751-766. DOI: 10.12386/A2014sxxb0070
论文

随机反应扩散方程的Lp-随机吸引子

    刘林芳, 尹福其
作者信息 +

Lp-Random Attractor for Stochastic Reaction-Diffusion Equation on Unbounded Domains

    Lin Fang LIU, Fu Qi YIN
Author information +
文章历史 +

摘要

研究了定义在无界区域上具可乘白噪音的随机反应扩散方程的渐近行为.运用一致估计得到了Lp-随机吸收集;对方程的解运用渐近优先估计法,建立了相应随机动力系统的渐近紧性,证明了Lp-随机吸引子的存在性.该随机吸引子是紧不变集并按Lp-范数 吸引L2中所有缓增集,其中,非线性项f满足p-1 (p≥2)阶增长条件.

Abstract

We focus on the asymptotic behavior of solution for reaction-diffusion equation with multiplicative noise on unbounded domains. The uniform estimates is used to obtain the Lp-random absorbing set. A new priori estimate method, called asymptotic priori estimate, is applied to the unbounded part of solution to establish the Lp-asymptotic compactness of the corresponding random dynamical system, then the existence of Lp-random attractor is proved. This random attractor is not only a compact set but an invariant tempered set which attracts every tempered random subset of L2 in the topology of Lp. The nonlinearity term f is allowed to possess some growth of arbitrary order p - 1, where p ≥ 2.

关键词

随机反应扩散方程 / 可乘白噪音 / 渐近优先估计 / Lp-随机吸引子

Key words

stochastic reaction-diffusion equation / multiplicative noise / the asymptotic priori estimates / Lp-random attractor

引用本文

导出引用
刘林芳, 尹福其. 随机反应扩散方程的Lp-随机吸引子. 数学学报, 2014, 57(4): 751-766 https://doi.org/10.12386/A2014sxxb0070
Lin Fang LIU, Fu Qi YIN. Lp-Random Attractor for Stochastic Reaction-Diffusion Equation on Unbounded Domains. Acta Mathematica Sinica, Chinese Series, 2014, 57(4): 751-766 https://doi.org/10.12386/A2014sxxb0070

参考文献

[1] Arnold L., Random Dynamical Systems, Springer-Verlag, New-York, Berlin, 1998.

[2] Ball J. M., Continuity properties and global attractors of generlized semi-flows and the Naiver-Stokes equations, J. Nonlinear Sci., 1997, 7: 475-502.

[3] Bates P.W., Lu K.,Wang B., Random attractors for the stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 2009, 246(2): 845-869.

[4] Caraballo T., Hoden P. E., Schmalfuβ B., Exponentially stable stationary solutions for stochastic evolution equations and their perturbation, Appl. Math. Opim., 2004, 50: 182-207.

[5] Caraballo T., Langa J. A., Stability and random attractors for a reaction-diffusion with multiplicative noise, Discrete Contin. Dyn. Syst., 2000, 6: 875-892.

[6] Crauel H., Flandoli F., Attractors for random dynamical systems, Probab. Th. Re. Fields, 1994, 100: 365- 393.

[7] Flandoli F., Schmalfuβ B., Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Rep., 1996, 59: 21-45.

[8] Li J., Li Y. R., Wang B., Random attractors of reaction-diffusion equations with multiplicative noise in Lp, Appl. Math. Comput., 2010, 215: 3399-3407.

[9] Li Y. R., Guo B. L., Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Differential Equations, 2008, 245: 1775-1800.

[10] Lukaszewicz G., On pullback attractors in Lp(RN) for non-autonomous reaction-diffusion equations, Nonlinear Anal., 2010, 73(2): 350-357.

[11] Song H. T., Zhong C. K., Attractors of non-autonomous reaction-diffusion equations in Lp(RN), Nonlinear Anal., 2008, 68: 1890-1897.

[12] Sun C. Y., Zhong C. K., Attractors for the semi-linear reaction-diffusion equation with distribution derivatives in unbounded domains, Nonlinear Anal., 2005, 63: 49-65.

[13] Temam R., Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1998.

[14] Wang B., Random attractors for the FitzHugh-Nagumo system on unbounded domains, Nonlinear Anal., 2009, 71(7-8): 2811-2828.

[15] Wang B., Random attractors for the stochastic Benjamin-Bona-Mahony equation on unbounded domains, J. Differential Equations, 2009, 246(6): 2506-2537.

[16] Wang B., Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical system, J. Differential Equations, 2012, 253: 1544-1583.

[17] Wang B. X., Asymptotic behavior of stochastic wave equations with critical exponents on R3, Trans. Amer. Math. Soc., 2011, 363: 3639-3663.

[18] Wang Z. J., Zhou S., Random attractors for the stochastic reaction-diffusion equation with multiplicative noise on unbounded domains, J. Math. Anal. Appl., 2011, 384: 160-172.

[19] Yan X. J., Zhong C. K., Lp(RN)-uniform attractor for non-autonomous reaction-diffusion equations in unbounded domains, J. Math. Phys., 2008, 49(102705): 1-17.

[20] Zhao W. Q., Li Y. R., (L2(RN), Lp(RN))-random attractors for stochastic reaction-diffusion equation on unbounded domains, Nonlinear Anal., 2012, 75: 485-502.

基金

国家自然科学基金资助项目(11171280,11101054)湖南省教育厅基金资助项目(12C0408);湘潭大学博士后基金资助项目

PDF(615 KB)

219

Accesses

0

Citation

Detail

段落导航
相关文章

/