一类解析Toeplitz算子的约化子空间

王春梅, 于天秋

数学学报 ›› 2014, Vol. 57 ›› Issue (5) : 841-850.

PDF(469 KB)
PDF(469 KB)
数学学报 ›› 2014, Vol. 57 ›› Issue (5) : 841-850. DOI: 10.12386/A2014sxxb0078
论文

一类解析Toeplitz算子的约化子空间

    王春梅, 于天秋
作者信息 +

Reducing Subspaces of Certain Analytic Toeplitz Operators

    Chun Mei WANG, Tian Qiu YU
Author information +
文章历史 +

摘要

考虑了由对称测度定义的解析函数Hilbert空间上解析Toeplitz算子的约化子空间.特别地,对任一正整数n,解析Toeplitz算子Tzn,的约化子空间得到了完全刻画.

Abstract

We consider the reducing subspaces of analytic Toeplitz operators on the Hilbert spaces of analytic function with symmetric measures. In particular, given any positive integer n, the reducing subspaces of analytic Toeplitz operator Tzn are completely described.

关键词

对称测度 / Toeplitz算子 / 约化子空间

Key words

symmetric measure / Toeplitz operator / reducing subspace

引用本文

导出引用
王春梅, 于天秋. 一类解析Toeplitz算子的约化子空间. 数学学报, 2014, 57(5): 841-850 https://doi.org/10.12386/A2014sxxb0078
Chun Mei WANG, Tian Qiu YU. Reducing Subspaces of Certain Analytic Toeplitz Operators. Acta Mathematica Sinica, Chinese Series, 2014, 57(5): 841-850 https://doi.org/10.12386/A2014sxxb0078

参考文献

[1] Brown A., On a class of operators, Proc. Amer. Math. Soc., 1953, 4(5): 723-728.

[2] Cao G. F., Zhong C. Y., Fu Y., The commutants and complete irreducibility of Toeplitz operators withsymbols which are finite Blaschke products (in Chinese), Chinese Ann. Math. Ser. A, 2000, 21(2): 189-196.

[3] Cowen C. C., The commutant of an analytic Toeplitz operator, Trans. Amer. Math. Soc., 1978, 239(5):1-31.

[4] Engliš M., Toeplitz Operators on Bergman-Type Spaces, Ph.D Thesis, MU CSAV, Praha, 1991.

[5] Frankfurt R., Subnormal weighted shifts and related function spaces, J. Math. Anal. Appl., 1975, 52(3):471-489.

[6] Hu J. Y., Sun S. H., Xu X. M., et al., Reducing subspace of analytic Toeplitz operators on the Bergmanspace, Integr. Equ. Oper. Theory, 2004, 49(3): 387-395.

[7] Jiang C. L., Li Y. C., The commutant and similarity invariant of analytic Toeplitz operators on Bergmanspace, Sci. China Ser. A, 2007, 50(5): 651-664.

[8] Shields A. L., Weighted shift operators and analytic function theory, Topics Operator Theory, Math. Surveys,1974, 13: 49-128.

[9] Stampfli J. G., Which weighted shifts are subnormal? Pacific J. Math., 1966, 17(2): 367-379.

[10] Stessin M., Zhu K., Reducing subspaces of weighted shift operators, Proc. Amer. Math. Soc., 2002, 130(9),2631-2639.

[11] Stessin M., Zhu K., Generalized factorization in Hardy spaces and the commutant of Toeplitz operators,Canad. J. Math., 2003, 55(2): 379-400.

[12] Sun S. L., Composition operators and the reducing subspaces of a class of analytic Toeplitz operators (inChinese), Adv. in Math., 1993, 22(5): 422-434.

[13] Sun S. L., Wang X. L., Commutants and reducing subspaces of certain analytic Toeplitz operators in theHardy space (in Chinese), Acta Anal. Funct. Appl., 2007, 9(3): 273-288.

[14] Sun S. L., Wang Y. J., Reducing subspaces of certain analytic Toeplitz operators on the Bergman space,Northeast. Math. J., 1998, 14(2): 147-158.

[15] Zhong C. Y., Multiplication Operators and M-Berezin Transform, Ph.D Thesis, Vanderbilt University,Nashville, 2006.

[16] Zhu K., Reducing subspaces for a class of multiplication operators, J. London Math. Soc., 2000, 62(2):553-568.

基金

国家自然科学数学天元基金资助项目(11226121);黑龙江省教育厅科学技术研究项目(12541618)

PDF(469 KB)

315

Accesses

0

Citation

Detail

段落导航
相关文章

/