紧致H-扭广义Calabi-Yau流形中形变的整体典范族

韦康

数学学报 ›› 2014, Vol. 57 ›› Issue (5) : 961-972.

PDF(416 KB)
PDF(416 KB)
数学学报 ›› 2014, Vol. 57 ›› Issue (5) : 961-972. DOI: 10.12386/A2014sxxb0089
论文

紧致H-扭广义Calabi-Yau流形中形变的整体典范族

    韦康
作者信息 +

Global Canonical Family of Deformations on Compact H-Twisted Generalized Calabi-Yau Manifolds

    Kang WEI
Author information +
文章历史 +

摘要

在紧致H-扭广义Calabi-Yau流形得到了一个可以用来检验形变中典范截面是否全纯的式子e dHe-∈ρ = ∂Hρ +∂H(-∈ρ).

Abstract

We get the formula to determine whether the canonical sections on compact H-twisted generalized Calabi-Yau manifolds are holomorphic:e dHe-∈ρ = ∂Hρ +∂H(-∈ρ).

关键词

复结构的形变 / Hodge 理论 / Hermitian流形 / / hler流形 / Calabi—Yau流形

Key words

deformations of complex structures / Hodge theory / Hermitian manifolds / / hlerian manifolds / Calabi-Yau manifolds

引用本文

导出引用
韦康. 紧致H-扭广义Calabi-Yau流形中形变的整体典范族. 数学学报, 2014, 57(5): 961-972 https://doi.org/10.12386/A2014sxxb0089
Kang WEI. Global Canonical Family of Deformations on Compact H-Twisted Generalized Calabi-Yau Manifolds. Acta Mathematica Sinica, Chinese Series, 2014, 57(5): 961-972 https://doi.org/10.12386/A2014sxxb0089

参考文献

[1] Baraglia D., Variation of Hodge structure for generalized complex manifolds, 2012, arXiv:math.DG/1205.0240v1.

[2] Clemens H., Geometry of formal Kuranishi theory, Advances in Math., 2005, 198: 311-365.

[3] Goto R., On deformation of generalized Calabi-Yau, hyper Kähler, G2 and Spin(7) structures I, 2005, aiXiv:Math/0512211v1.

[4] Gualtieri M., Generalized complex geometry, D. Phil. thesis, Oxford Univ., 2004, arXiv: Math.DG/0401221.

[5] Gualtieri M., Generalized geometry and the Hodge decomposition, 2004, arXiv: Math.DG/0409093v1.

[6] Hitchin N., Gerneralized Calabi-Yau manifolds, The Quarterly J. Math., 2003, 54(3): 281-308.

[7] Kodaira K., Complex Manifolds and Deformation of Complex Structure, Springer-Verlag, New York, 1981.

[8] Li Y., On deformation of generalized complex structures: the generalized Calabi-Yau case, 2005, arXiv:hep-th/0508030v2.

[9] Liu K. F., Rao S., Remarks on the Cartan formula and its applications, Asian J. Math., 2012, 16(1): 157-170,arXiv: 1104.1240v1.

[10] Liu K. F., Rao S., Yang X K. Quasi-isometry and deformations of Calabi-Yau manifolds, 2012,arXiv:math.DG/1207.1182v2. To appear in Invent. Math.

[11] Morrow J., Kodaira K., Complex Manifolds, Holt, Rinehart and Winston, Inc., New York, Montreal, Que.London, 1971.

[12] Ševera, Weinstein A., Poisson geometry with a 3-form background, Progress of Theoretical Phy. Supp., 2001,144: 145-154.
PDF(416 KB)

Accesses

Citation

Detail

段落导航
相关文章

/