sl(3, k)正则幂零表示投射模的Lowey序列

李宜阳, 舒斌, 姚裕丰

数学学报 ›› 2014, Vol. 57 ›› Issue (5) : 981-992.

PDF(500 KB)
PDF(500 KB)
数学学报 ›› 2014, Vol. 57 ›› Issue (5) : 981-992. DOI: 10.12386/A2014sxxb0091
论文

sl(3, k)正则幂零表示投射模的Lowey序列

    李宜阳1, 舒斌2, 姚裕丰3
作者信息 +

The Lowey Series of Regular Nilpotent Representations for sl(3, k)

    Yi Yang LI1, Bin SHU2, Yu Feng YAO3
Author information +
文章历史 +

摘要

基域k是特征为5的代数闭域,李代数g=s(3,k).当p-特征函数χ为正则幂零且具有标准Levi型时,本文得到了g的主不可分解模的Lowey序列及其单模自扩张的维数.

Abstract

Let k be an algebraically closed field of prime characteristic p = 5, Lie algebra g = sl(3, k). In this paper, when p-character χ is regular nilpotent and has standard Levi form, the Lowey series of principle indecomposable g-modules and the dimensions for the self-extension of irreducible g-modules were given.

关键词

正则幂零 / Loewy 序列 / 自扩张

Key words

regular nilpotent / Loewy series / self-extension

引用本文

导出引用
李宜阳, 舒斌, 姚裕丰. sl(3, k)正则幂零表示投射模的Lowey序列. 数学学报, 2014, 57(5): 981-992 https://doi.org/10.12386/A2014sxxb0091
Yi Yang LI, Bin SHU, Yu Feng YAO. The Lowey Series of Regular Nilpotent Representations for sl(3, k). Acta Mathematica Sinica, Chinese Series, 2014, 57(5): 981-992 https://doi.org/10.12386/A2014sxxb0091

参考文献

[1] Artin E., Nesbitt C. J., Thrall R. M., Rings with Minimum Condition, University of Michigan Publicationsin Mathematics, 1, Ann Arbor: University of Michigan Press, 1944.

[2] Bernstein I. N., Gel'fand I. M., Gel'fand S. I., Structure of representation generated by vectors of highestweight, Funct. Anal. Appl., 1971, 5: 1-9.

[3] Bernstein I. N., Gel'fand I. M., Gel'fand S. I., Diffferential Operators on the Base Affine Space and a Studyof g-modules, in “Lie Groups and Their Representations” I. M. Gel'fand, Ed., Hilger, London, 1975: 21-64.

[4] Humphreys J., Modular representations of classical Lie algebras and semisimple groups, J. Algebra, 1971,19: 51-79.

[5] Humphreys J., Introduction to Lie algebras and Representation Theorey, Graduate Texs in Mathematics 9,Springer-Verlag, New York, 1972.

[6] Irving R. S., The structure of certain highest weight modules for SL3, J. Algebra, 1986, 99: 438-457.

[7] Jantzen J. C., Representations of Lie algebras in prime characteristic, in A. Broer (Ed.), RepresentationTheories and Algebraic Geometry, Proceedings, Montreal, 1997, in: NATO ASI Series, 1998, C514: 185-235.

[8] Jantzen J. C., Reresentations of Algebraic Groups, 2nd edn, American Mathematical Society, Providence,RI, 2003.

[9] Farnsteiner R., Cohomology of reduced enveloping algebras, Math. Zeit., 1991, 206: 103-117.

[10] Verma D. N., Structure of cerntain induced representationof complex semisimple Lie algebras, Bull. Amer.Math. Soc., 1968, 74: 160-168.

基金

国家自然科学基金资助项目(11201293,11271130)

PDF(500 KB)

210

Accesses

0

Citation

Detail

段落导航
相关文章

/