Sn+p中Möbius第二基本形式平行的子流形的刚性定理

李方方

数学学报 ›› 2014, Vol. 57 ›› Issue (6) : 1081-1088.

PDF(427 KB)
PDF(427 KB)
数学学报 ›› 2014, Vol. 57 ›› Issue (6) : 1081-1088. DOI: 10.12386/A2014sxxb0099
论文

Sn+p中Möbius第二基本形式平行的子流形的刚性定理

    李方方
作者信息 +

On Rigidity Theorem of Submanifolds with Parallel Möbius Second Fundamental Form in Sn+p

    Fang Fang LI
Author information +
文章历史 +

摘要

研究 Sn+p 中不含脐点且 Möbius第二基本形式平行的子流形, 得到了它的 Blaschke 张量 A 的模长平方有下界, 且对其达到下界的情形进行了分类.

Abstract

We study umbilic free submanifolds with parallel Möbius second fundamental form.We find the squared norm of the Blashke tensor A has a lower bound for these submanifolds, and we get a classification result when it reaches the lower bound.

关键词

子流形 / / bius 第二基本形式 / 平行

Key words

submanifolds / / bius second fundamental form / parallel

引用本文

导出引用
李方方. Sn+p中Möbius第二基本形式平行的子流形的刚性定理. 数学学报, 2014, 57(6): 1081-1088 https://doi.org/10.12386/A2014sxxb0099
Fang Fang LI. On Rigidity Theorem of Submanifolds with Parallel Möbius Second Fundamental Form in Sn+p. Acta Mathematica Sinica, Chinese Series, 2014, 57(6): 1081-1088 https://doi.org/10.12386/A2014sxxb0099

参考文献

[1] Akivis M.A., Goldberg V.V., Conformal Differential Geometry and Its Generalizations, Wiley, New York, 1996.

[2] Akivis M.A., Goldberg V.V., A conformal differential invariant and the conformal rigidity of hypersurfaces, Proc.Amer.Math.Soc., 1997, 125: 2415-2424.

[3] Cheng Q.M., Submanifolds with constant scalar curvature, Proc.Royal Soc.Edinburgh, 2002, 132A: 1163. 1183.

[4] Chern S.S., do Carmo M., Kobayashi S., Minimal Submanifolds of a Sphere with Second Fundamental form of Constant Length, Functional Analysis and Related Fields, Springer, Berlin, 1970, 59-75.

[5] Cheng Q.M., Li X.X., Qi X.R., A classification of hypersurfaces with parallel para-Blaschke tensor in Sm+1, Internat.J.Math., 2010, 21(3): 297-316.

[6] Cheng Q.M., Shu S.C., A Möbius characterization of submanifolds, J.Math.Soc.Japan., 2006, 58: 903-925.

[7] Hu Z.J., Li H.Z., Classification of hypersurfaces with parallel Möbius second fundamental form in Sn+1, Sci.China Ser.A, 2004, 47: 417-430.

[8] Hu Z.J., Li H.Z., Submanifolds with constant Möbius scalar curvature in Sn, Manuscripta Math., 2003. 111: 287-302.

[9] Li T.Z., Ma X., Wang C.P., Möbius homogeneous hypersurfaces with two distinct principal curvatures in Sn+1, Arkiv FÖr Matematik, 2012: 1-14.

[10] Li H.Z., Wang C.P., Surfaces with vanishing Möbius form Sn, Acta Mathematica Sinica, English Series, 2003, 19(10): 671-678.

[11] Liu H.L., Wang C.P., Zhao G.S., Möbius isotropic submanifolds in Sn, Tohoku Math.J., 2001, 53(2): 553-569.

[12] Li X.X., Zhang F.Y., A Möbius characterization of submanifolds in real space forms with parallel mean curvature and constant scalar curvature, Manuscripta Math., 2005, 117: 135-152.

[13] Li X.X., Zhang F.Y., A classification of immersed hypersurfaces in spheres with parallel Blaschke tensors, Tohoku Math.J., 2006, 58: 581-597.

[14] Santos W., Submanifolds with parallel mean curvature vector in spheres, Tôhoku Math.J., 1994, 46: 403. 415.

[15] Wang C.P., Möbius geometry of submanifolds in Sn, Manuscripta Math., 1998, 96: 517-534.

[16] Wu L.F., The surfaces in S3 with semi-parallel Möbius second fundamental form, Journal of Shangrao Normal College, 2006, 26(6): 11-14.

[17] Zhang T.F., The hypersurfaces with parallel Möbius form in Sn+1, Adv.Math., 2003, 32(2): 230-238.

[18] Zhang T.F., Zhong D.X., Surfaces with vanishing Möbius form in Sn, Acta Mathematica Sinica, Chinese Series, 2004, 47(2): 241-250.
PDF(427 KB)

Accesses

Citation

Detail

段落导航
相关文章

/