设k,n为非负整数, S(n,k)表示第二类Stirling数.本文研究了 S(n,k)模 2 的方幂的同余式,首先给出了一类二项式系数模 2 的同余式, 然后利用上述结果得到了S(n,a2m+b)模2m的同余式.其表达式均由简单二项式系数组成, 其中m≥3, b=0,1,2.这些结果改进了Chan和Manna的结果.
Abstract
Let k and n be nonnegative integers.In this paper, we investigate the congruences for the Stirling numbers of the second kind S(n,k) modulo powers of 2.We first give a congruence for some certain binomial coefficients modulo 2.Using this result we then establish the congruences for S(n,a2m+b) modulo 2m, and express them in terms of binomial coefficients, where m ≥ 3, b= 0, 1, 2.These strengthen the results obtained by Chan and Manna.
关键词
同余式 /
第二类Stirling数 /
二项式系数
{{custom_keyword}} /
Key words
congruence /
Stirling numbers of the second kind /
binomial coefficient
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Adelberg A., Hong S., Ren W., Bounds of divided universal Bernoulli numbers and universal Kummer congruences, Proc.Amer.Math.Soc., 2008, 136: 61-71.
[2] Amdeberhan T., Manna D., Moll V., The 2-adic valuation of Stirling numbers, Experimental Math., 2008. 17: 69-82.
[3] Bendersky M., Davis D.M., 2-primary v1-periodic homotopy groups of SU(n), Amer.J.Math., 1991, 114. 529-544.
[4] Bennett C., Mosteig E., Congruence classes of 2-adic valuations of Stirling numbers of the second kind, J. Integer Sequences, 2013, 16: 13.3.6.
[5] Carlitz L., Congruences for generalized Bell and Stirling numbers, Duke Math.J., 1955, 22: 193-205.
[6] Clarke F., Hensel's lemma and the divisibility by primes of Stirling-like numbers, J.Number Theory, 1995. 52: 69-84.
[7] Crabb M.C., Knapp K., The Hurewicz map on stunted complex projective spaces, Amer.J.Math., 1988. 110: 783-809.
[8] Chan Y., Manna V., Congruences for Stirling numbers of the second kind, Contemporary Math., 2010, 517. 97-111.
[9] Davis D.M., Divisibility by 2 of Striling-like numbers, Proc.Amer.Math.Soc., 1990, 10: 597-600.
[10] Davis D.M., v1-periodic homotopy groups of SU(n) at odd primes, Proc.London Math.Soc., 1991, 43. 529-541.
[11] Davis D.M., Potocka K., 2-primary v1-periodic homotopy groups of SU(n) revisited, Forum Math., 2007. 19: 783-822.
[12] Davis D.M., Divisibility by 2 and 3 of certain Stirling numbers, Integers, 2008, 8: A56, 25pp.
[13] Glaisher J., On the residues of the inverse powers of numbers in arithmetic progression, Quart.J.Pure Appl. Math., 1901, 32: 271-305.
[14] Hong S., Notes on Glaisher's congruences, Chinese Ann.Math., 2000, 21B: 33-38.
[15] Hong S., Zhao J., Zhao W., The 2-adic valuations of Stirling numbers of the second kind, International J. Number Theory, 2012, 8: 1057-1066.
[16] Junod A., Congruences pour les polynômens et nombres de Bell, Bull.Belg.Math.Soc., 2002, 9: 503-509.
[17] Kummer E., Über eine allgemeine Eigenschaft der rationalen Entwicklungscoefficienten einer bestimmten Gattung analytischer Functionen, J.Reine Angew.Math., 1851, 41: 368-372.
[18] Kwong H., Minimum periods of S(n, k) modulo M, Fibonacci Quart., 1989, 27: 217-221.
[19] Lehmer E., On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann.of Math., 1938, 39: 350-360.
[20] Lengyel T., On the divisibility by 2 of Stirling numbers of the second kind, Fibonacci Quart., 1994, 32. 194-201.
[21] Lengyel T., On the 2-adic order of Stirling numbers of the second kind and their differences, DMTCS Proc. AK, 2009: 561-572.
[22] Lundell A.T., Generalized e-invariants and the numbers of James, Quart.J.Math.(Oxford), 1974, 25. 427-440.
[23] Lundell A.T., A divisibility property for Stirling numbers, J.Number Theory, 1978, 10: 35-54.
[24] Wannemacker S., On the 2-adic orders of Stirling numbers of the second kind, Integers, 2005, 5: A21, 7pp.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}