第二类Stirling数的一些同余式

赵建容

数学学报 ›› 2014, Vol. 57 ›› Issue (6) : 1161-1170.

PDF(416 KB)
PDF(416 KB)
数学学报 ›› 2014, Vol. 57 ›› Issue (6) : 1161-1170. DOI: 10.12386/A2014sxxb0106
论文

第二类Stirling数的一些同余式

    赵建容
作者信息 +

Some Congruences for Stirling Numbers of the Second Kind

    Jian Rong ZHAO
Author information +
文章历史 +

摘要

k,n为非负整数, S(n,k)表示第二类Stirling数.本文研究了 S(n,k)模 2 的方幂的同余式,首先给出了一类二项式系数模 2 的同余式, 然后利用上述结果得到了S(n,a2m+b)模2m的同余式.其表达式均由简单二项式系数组成, 其中m≥3, b=0,1,2.这些结果改进了Chan和Manna的结果.

Abstract

Let k and n be nonnegative integers.In this paper, we investigate the congruences for the Stirling numbers of the second kind S(n,k) modulo powers of 2.We first give a congruence for some certain binomial coefficients modulo 2.Using this result we then establish the congruences for S(n,a2m+b) modulo 2m, and express them in terms of binomial coefficients, where m ≥ 3, b= 0, 1, 2.These strengthen the results obtained by Chan and Manna.

关键词

同余式 / 第二类Stirling数 / 二项式系数

Key words

congruence / Stirling numbers of the second kind / binomial coefficient

引用本文

导出引用
赵建容. 第二类Stirling数的一些同余式. 数学学报, 2014, 57(6): 1161-1170 https://doi.org/10.12386/A2014sxxb0106
Jian Rong ZHAO. Some Congruences for Stirling Numbers of the Second Kind. Acta Mathematica Sinica, Chinese Series, 2014, 57(6): 1161-1170 https://doi.org/10.12386/A2014sxxb0106

参考文献

[1] Adelberg A., Hong S., Ren W., Bounds of divided universal Bernoulli numbers and universal Kummer congruences, Proc.Amer.Math.Soc., 2008, 136: 61-71.

[2] Amdeberhan T., Manna D., Moll V., The 2-adic valuation of Stirling numbers, Experimental Math., 2008. 17: 69-82.

[3] Bendersky M., Davis D.M., 2-primary v1-periodic homotopy groups of SU(n), Amer.J.Math., 1991, 114. 529-544.

[4] Bennett C., Mosteig E., Congruence classes of 2-adic valuations of Stirling numbers of the second kind, J. Integer Sequences, 2013, 16: 13.3.6.

[5] Carlitz L., Congruences for generalized Bell and Stirling numbers, Duke Math.J., 1955, 22: 193-205.

[6] Clarke F., Hensel's lemma and the divisibility by primes of Stirling-like numbers, J.Number Theory, 1995. 52: 69-84.

[7] Crabb M.C., Knapp K., The Hurewicz map on stunted complex projective spaces, Amer.J.Math., 1988. 110: 783-809.

[8] Chan Y., Manna V., Congruences for Stirling numbers of the second kind, Contemporary Math., 2010, 517. 97-111.

[9] Davis D.M., Divisibility by 2 of Striling-like numbers, Proc.Amer.Math.Soc., 1990, 10: 597-600.

[10] Davis D.M., v1-periodic homotopy groups of SU(n) at odd primes, Proc.London Math.Soc., 1991, 43. 529-541.

[11] Davis D.M., Potocka K., 2-primary v1-periodic homotopy groups of SU(n) revisited, Forum Math., 2007. 19: 783-822.

[12] Davis D.M., Divisibility by 2 and 3 of certain Stirling numbers, Integers, 2008, 8: A56, 25pp.

[13] Glaisher J., On the residues of the inverse powers of numbers in arithmetic progression, Quart.J.Pure Appl. Math., 1901, 32: 271-305.

[14] Hong S., Notes on Glaisher's congruences, Chinese Ann.Math., 2000, 21B: 33-38.

[15] Hong S., Zhao J., Zhao W., The 2-adic valuations of Stirling numbers of the second kind, International J. Number Theory, 2012, 8: 1057-1066.

[16] Junod A., Congruences pour les polynômens et nombres de Bell, Bull.Belg.Math.Soc., 2002, 9: 503-509.

[17] Kummer E., Über eine allgemeine Eigenschaft der rationalen Entwicklungscoefficienten einer bestimmten Gattung analytischer Functionen, J.Reine Angew.Math., 1851, 41: 368-372.

[18] Kwong H., Minimum periods of S(n, k) modulo M, Fibonacci Quart., 1989, 27: 217-221.

[19] Lehmer E., On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann.of Math., 1938, 39: 350-360.

[20] Lengyel T., On the divisibility by 2 of Stirling numbers of the second kind, Fibonacci Quart., 1994, 32. 194-201.

[21] Lengyel T., On the 2-adic order of Stirling numbers of the second kind and their differences, DMTCS Proc. AK, 2009: 561-572.

[22] Lundell A.T., Generalized e-invariants and the numbers of James, Quart.J.Math.(Oxford), 1974, 25. 427-440.

[23] Lundell A.T., A divisibility property for Stirling numbers, J.Number Theory, 1978, 10: 35-54.

[24] Wannemacker S., On the 2-adic orders of Stirling numbers of the second kind, Integers, 2005, 5: A21, 7pp.

基金

四川省教育厅科研项目(14ZB0450)

PDF(416 KB)

261

Accesses

0

Citation

Detail

段落导航
相关文章

/