三角代数上的交换零点Jordan可导映射

刘丹, 张建华

数学学报 ›› 2014, Vol. 57 ›› Issue (6) : 1203-1208.

PDF(326 KB)
PDF(326 KB)
数学学报 ›› 2014, Vol. 57 ›› Issue (6) : 1203-1208. DOI: 10.12386/A2014sxxb0111
论文

三角代数上的交换零点Jordan可导映射

    刘丹, 张建华
作者信息 +

Jordan Derivable Maps on Triangular Algebras by Commutative Zero Products

    Dan LIU, Jian Hua ZHANG
Author information +
文章历史 +

摘要

给出了三角代数上交换零点Jordan可导映射的结构.作为应用,得到了套代数上交换零点Jordan可导映射的具体形式.

Abstract

The structure of Jordan derivable maps on triangular algebras by commutative zero products is given.As an application, the form of Jordan derivable maps on nest algebras by commutative zero products is obtained.

关键词

三角代数 / Jordan可导映射 / 交换零积

Key words

triangular algebra / Jordan derivable map / commutative zero product

引用本文

导出引用
刘丹, 张建华. 三角代数上的交换零点Jordan可导映射. 数学学报, 2014, 57(6): 1203-1208 https://doi.org/10.12386/A2014sxxb0111
Dan LIU, Jian Hua ZHANG. Jordan Derivable Maps on Triangular Algebras by Commutative Zero Products. Acta Mathematica Sinica, Chinese Series, 2014, 57(6): 1203-1208 https://doi.org/10.12386/A2014sxxb0111

参考文献

[1] An R., Hou J., Characterizations of derivations on triangular rings: Additive maps derivable at idempotents, Linear Algebra Appl., 2009, 431: 1070-1080.

[2] An R., Hou J., Characterizations of Jordan derivations on rings with idempotents: Additive maps Jordan derivable at zero, Chinese Journal of Contemporary Mathematics, Chinese Series, 2010, 31: 463-474.

[3] Cheung W., Lie derivations of triangular algebras, Linear and Multilinear Algebra, 2003, 51: 299-310.

[4] Ji P., Qi W., Characterizations of Lie derivations of triangular algebras, Linear Algebra Appl., 2011, 435. 1137-1146.

[5] Jiao M., Hou J., Additive map derivable at zero points on nest algebras, Linear Algebra Appl., 2010, 432. 2984-2994.

[6] Jing W., On Jordan all-derivable points of B(H), Linear Algebra Appl., 2009, 430: 941-946.

[7] Lu F., Characterizations of derivations and Jordan derivations on Banach algebras, Linear Algebra Appl., 2009, 430: 2233-2239.

[8] Lu F., Jing W., Characterizations of Lie derivations of B(X), Linear Algebra Appl., 2010, 432: 89-99.

[9] Qi X., Cui J., Hou J.Characterizing additive ξ-Lie derivations of prime algebras by ξ-Lie zero products, Linear Algebra Appl., 2011, 434: 669-682.

[10] Zhang J., Yu W., Jordan derivations of triangular algebras, Linear Algebra Appl., 2006, 419: 251-255.

[11] Zhao J., Zhu J., Jordan higher all-derivable points in triangular algebras, Linear Algebra Appl., 2012, 436. 3072-3086.

[12] Zhao S., Zhu J., Jordan all-derivable points in the algebra of all upper triangular matrices, Linear Algebra Appl., 2010, 433: 1922-1938.

基金

国家自然科学基金(11371233); 教育部高等学校博士学科点专项科研基金(20110202110002)

PDF(326 KB)

Accesses

Citation

Detail

段落导航
相关文章

/