rep(A3, I, A)中的Gorenstein投射模

罗秀花, 居腾霞, 吴美云

数学学报 ›› 2015, Vol. 58 ›› Issue (1) : 115-124.

PDF(467 KB)
PDF(467 KB)
数学学报 ›› 2015, Vol. 58 ›› Issue (1) : 115-124. DOI: 10.12386/A2015sxxb0012
论文

rep(A3, I, A)中的Gorenstein投射模

    罗秀花, 居腾霞, 吴美云
作者信息 +

Gorenstein-Projective Modules in rep(A3, I, A)

    Xiu Hua LUO, Teng Xia JU, Mei Yun WU
Author information +
文章历史 +

摘要

A是域k上的有限维代数, (Q,I)是带关系的箭图,令Λ = AkkQ/I.Λ的模范畴Λ-Mod及有限生成模范畴Λ-mod分别与(Q,I)在A上的表示范畴Rep(Q, I, A) 及有限维表示范畴rep(Q, I, A)等价. 给出了范畴rep(A3, I,A)中Gorenstein投射模的具体构造,其中(A3,I)=321,I=<βα>. 在此基础上,给出了代数A是自入射代数的一个充分必要条件.

Abstract

Given a finite-dimensional algebra A over a field k, and a quiver with relations (Q,I), let Λ = AkkQ/I. The category Λ-Mod (Resp. Λ-mod) of (Resp. finitely generated) Λ-modules is equivalent to the category Rep(Q, I,A) (Resp. rep(Q, I,A)) of (Resp. finite-dimensional) representations of (Q, I) over A. The main result of this paper explicitly describes the Gorenstein-projective modules in rep(A3,I,A), where (A3, I) = 3 α 21. with relation I = < βα >. As a corollary, we give a necessary and sufficient condition for A being a self-injective algebra.

关键词

箭图在代数上的表示 / (强) Gorenstein投射模 / 自入射代数

Key words

representations of a quiver over an algebra / (strongly) Gorenstein-projective modules / self-injective algebras

引用本文

导出引用
罗秀花, 居腾霞, 吴美云. rep(A3, I, A)中的Gorenstein投射模. 数学学报, 2015, 58(1): 115-124 https://doi.org/10.12386/A2015sxxb0012
Xiu Hua LUO, Teng Xia JU, Mei Yun WU. Gorenstein-Projective Modules in rep(A3, I, A). Acta Mathematica Sinica, Chinese Series, 2015, 58(1): 115-124 https://doi.org/10.12386/A2015sxxb0012

参考文献

[1] Auslander M., Bridger M., Stable Module Theory, Mem. Amer. Math. Soc., Providence Rhode Island, 1969.

[2] Auslander M., Reiten I., Applications of contravariantly finite subcategories, Adv. Math., 1991, 86: 111-152.

[3] Avramov L. L., Martsinkovsky A., Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension, Proc. London Math. Soc., 2002, 85(3): 393-440.

[4] Bennis D., Mahdou N., Strongly Gorenstein projective, injective and flat modules, J. Pure Algebra, 2007, 210: 437-445.

[5] Buchweitz R. O., Maximal Cohen-Macaulay Modules and Tate Cohomology over Gorenstein Rings, Unpublished Manuscript, Hamburg, 1987, pp.155.

[6] Chen X. W., Relative singularity categories and Gorenstein-projective modules, Mathematische Nachrichten, 2011, 284(2/3): 199-212.

[7] Enochs E. E., Jenda O. M. G., Gorenstein injective and projective modules, Math. Z., 1995, 220(4): 611-633.

[8] Enochs E. E., Jenda O. M. G., Relative Homological Algebra, De Gruyter Exp. Math. 30.Walter De Gruyter., Berlin, New York, 2000.

[9] Li Z. W., Zhang P., A construction of Gorenstein-projective modules, J. Algebra, 2010, 323: 1802-1812.

[10] Luo X. H., Zhang P., Monic representations and Gorenstein-projective modules, Pacific J. Math., 2013, 264(1): 163-194.

[11] Ringel C. M., The Gorenstein projective modules for the Nakayama algebras I., J. Algebra, 2013, 385: 241-261.

[12] Xiong B. L., Zhang P., Gorenstein-projective modules over triangular matrix Artin algebras, J. Algebra and Its Applications, 2012, 11(4): 1250066.

[13] Zhang P., Gorenstein-projective modules and symmetric recollements, J. Algebra, 2013, 388: 65-80.

[14] Zhang P., Monomorphism categories, cotilting theory, and Gorenstein-projective modules, J. Algebra, 2011, 339: 181-202.

基金

国家自然科学基金资助项目(11401323);南通大学引进人才科研启动费项目(13R40)

PDF(467 KB)

Accesses

Citation

Detail

段落导航
相关文章

/