指数型调和映射

江苑珍, 潘恒

数学学报 ›› 2015, Vol. 58 ›› Issue (1) : 131-140.

PDF(525 KB)
PDF(525 KB)
数学学报 ›› 2015, Vol. 58 ›› Issue (1) : 131-140. DOI: 10.12386/A2015sxxb0014
论文

指数型调和映射

    江苑珍1, 潘恒2
作者信息 +

On Exponentially Harmonic Maps

    Yuan Jen CHIANG1, Heng PAN2
Author information +
文章历史 +

摘要

证明了在适当条件下,指数型能量和指数型调和映射是共形不变的.我们主要研究了指数型调和的黎曼淹没和等距浸入,还研究了与黎曼等距浸入相关的高斯映射是指数型调和.

Abstract

We show that both exponential energy and exponentially harmonic map are conformally invariant under a circumstance. We investigate exponentially harmonic Riemannian submersions and exponentially harmonic isometric immersions. We also examine the associated Gauss map of a Riemannian isometric immersion which is exponentially harmonic.

关键词

指数型能量 / 指数应力场 / 指数型调和映射

Key words

exponential energy / exponential tension field / exponentially harmonic map

引用本文

导出引用
江苑珍, 潘恒. 指数型调和映射. 数学学报, 2015, 58(1): 131-140 https://doi.org/10.12386/A2015sxxb0014
Yuan Jen CHIANG, Heng PAN. On Exponentially Harmonic Maps. Acta Mathematica Sinica, Chinese Series, 2015, 58(1): 131-140 https://doi.org/10.12386/A2015sxxb0014

参考文献

[1] Cheung L. F., Leung P. F., The second variation formula for exponentially harmonic maps, Bull. Austral. Math. Soc., 1999, 59: 509-514.

[2] Chiang Y. J., Developments of Harmonic Maps, Wave Maps and Yang-Mills Fields Into Biharmonic Maps, Biwave Maps and bi-Yang-Mills Fields, Birkhäuser, Springer, Basel, in the series of “Frontiers in Mathematics”, xxi+399, 2013.

[3] Chiang Y. J., Wolak R., Transversal wave maps and transversal exponential wave maps, J. Geom., 2013, 104(3): 443-459.

[4] Chiang Y. J., Yang Y. H., Exponential wave maps, J. Geom. Phys., 2007, 57(12): 2521-2532.

[5] Duc D. M., Eells J., Regularity of exponentially harmonic functions, Internat. J. Math., 1991, 2(1): 395-398.

[6] Eells J., Lemaire L., Some Properties of Exponentially Harmonic Maps, in: Partial Differential Equations, Part 1, 2 (Warsaw, 1990), 129-136, Banach Center Pulb. 27, Polish Acad. Sci., Warsaw, 1992.

[7] Eells J., Sampson J. H., Harmonic maps of Riemannian manifolds, Amer. J. Math., 1964, 86: 109-160.

[8] Eisenhart L. P., Riemannian Geometry, Princeton Univ. Press, Princeton, New Jersey, 1926.

[9] Hong M. C., On the conformal equivalence of harmonic maps and exponentially harmonic maps, Bull. London Math. Soc., 1992, 24: 488-492.

[10] Hong J. Q., Yang Y., Some results on exponentially harmonic maps, Chinese Ann. Math. Ser. A, 1993, 14(6): 686-691.

[11] Kanfon A. D., Füzfa A., Lambert D., Some examples of exponentially harmonic maps, J. Phys. A: Math. Gen., 2002, 35: 7629-7639.

[12] Kobayashi S., Nomizu K., Foundation of Differential Geometry, Vols. I, II, Wiley, New York, 1963/1969.

[13] Liu J., Nonexistence of stable exponentially harmonic maps from or into compact convex hypersurfaces in Rm+1, Turk J. Math., 2008, 32: 117-126.

[14] Ruh A., Vilm J., The tension field of the Gauss map, Trans. Amer. Math. Soc., 1970, 149: 569-573.

[15] Smith R. T., The second variation formula for harmonic mappings, Proc. Amer. Math. Soc., 1975, 47(1): 229-237.

[16] Takeuchi H., Stability and Liouville theorems of p-harmonic maps, Japan J. Math., 1991, 17: 317-332.

[17] Wallach N., Minimal Immersions of Symmetric Spaces Into Spheres, Symmetric Spaces, Marcel Dekker, New York, 1972, 1-40.

[18] Zhang Y., Wang Y., Liu J., Negative exponentially harmonic maps, J. Bejing Normal U. (Nat. Sci.), 1998, 34(3): 324-329.

基金

江苑珍获玛丽华盛顿大学教授研究补助基金,2014年8月于南韩汉城国际数学家大会讲演此文

PDF(525 KB)

Accesses

Citation

Detail

段落导航
相关文章

/