1. Department of Mathematics, University of Mary Washington, Fredericksburg VA 22401, USA;
2. Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
We show that both exponential energy and exponentially harmonic map are conformally invariant under a circumstance. We investigate exponentially harmonic Riemannian submersions and exponentially harmonic isometric immersions. We also examine the associated Gauss map of a Riemannian isometric immersion which is exponentially harmonic.
Yuan Jen CHIANG, Heng PAN.
On Exponentially Harmonic Maps. Acta Mathematica Sinica, Chinese Series, 2015, 58(1): 131-140 https://doi.org/10.12386/A2015sxxb0014
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Cheung L. F., Leung P. F., The second variation formula for exponentially harmonic maps, Bull. Austral. Math. Soc., 1999, 59: 509-514.
[2] Chiang Y. J., Developments of Harmonic Maps, Wave Maps and Yang-Mills Fields Into Biharmonic Maps, Biwave Maps and bi-Yang-Mills Fields, Birkhäuser, Springer, Basel, in the series of “Frontiers in Mathematics”, xxi+399, 2013.
[3] Chiang Y. J., Wolak R., Transversal wave maps and transversal exponential wave maps, J. Geom., 2013, 104(3): 443-459.
[4] Chiang Y. J., Yang Y. H., Exponential wave maps, J. Geom. Phys., 2007, 57(12): 2521-2532.
[5] Duc D. M., Eells J., Regularity of exponentially harmonic functions, Internat. J. Math., 1991, 2(1): 395-398.
[6] Eells J., Lemaire L., Some Properties of Exponentially Harmonic Maps, in: Partial Differential Equations, Part 1, 2 (Warsaw, 1990), 129-136, Banach Center Pulb. 27, Polish Acad. Sci., Warsaw, 1992.
[7] Eells J., Sampson J. H., Harmonic maps of Riemannian manifolds, Amer. J. Math., 1964, 86: 109-160.
[8] Eisenhart L. P., Riemannian Geometry, Princeton Univ. Press, Princeton, New Jersey, 1926.
[9] Hong M. C., On the conformal equivalence of harmonic maps and exponentially harmonic maps, Bull. London Math. Soc., 1992, 24: 488-492.
[10] Hong J. Q., Yang Y., Some results on exponentially harmonic maps, Chinese Ann. Math. Ser. A, 1993, 14(6): 686-691.
[11] Kanfon A. D., Füzfa A., Lambert D., Some examples of exponentially harmonic maps, J. Phys. A: Math. Gen., 2002, 35: 7629-7639.
[12] Kobayashi S., Nomizu K., Foundation of Differential Geometry, Vols. I, II, Wiley, New York, 1963/1969.
[13] Liu J., Nonexistence of stable exponentially harmonic maps from or into compact convex hypersurfaces in Rm+1, Turk J. Math., 2008, 32: 117-126.
[14] Ruh A., Vilm J., The tension field of the Gauss map, Trans. Amer. Math. Soc., 1970, 149: 569-573.
[15] Smith R. T., The second variation formula for harmonic mappings, Proc. Amer. Math. Soc., 1975, 47(1): 229-237.
[16] Takeuchi H., Stability and Liouville theorems of p-harmonic maps, Japan J. Math., 1991, 17: 317-332.
[17] Wallach N., Minimal Immersions of Symmetric Spaces Into Spheres, Symmetric Spaces, Marcel Dekker, New York, 1972, 1-40.
[18] Zhang Y., Wang Y., Liu J., Negative exponentially harmonic maps, J. Bejing Normal U. (Nat. Sci.), 1998, 34(3): 324-329.