幺模乘子在α模空间中的渐进估计

赵国平, 郭炜超

数学学报 ›› 2015, Vol. 58 ›› Issue (1) : 141-152.

PDF(495 KB)
PDF(495 KB)
数学学报 ›› 2015, Vol. 58 ›› Issue (1) : 141-152. DOI: 10.12386/A2015sxxb0015
论文

幺模乘子在α模空间中的渐进估计

    赵国平1, 郭炜超2
作者信息 +

Asymptotic Estimates of Unimodular Modifiers on α Modulation Space

    Guo Ping ZHAO1, Wei Chao GUO2
Author information +
文章历史 +

摘要

我们研究幺模乘子在α模空间中的渐进估计.对不同频率分解的空间进行统一的研究, 包括模空间以及Besov空间.结果中的上界估计包含了已知的模空间的结果. 同时,在对符号函数做局部非退化假设的条件下, 给出幺模乘子的最佳渐进估计.

Abstract

We study the asymptotic estimates of unimodular multipliers on α modulation spaces. We make a unified study about different types of function spaces, including modulation spaces and Besov spaces. The upper bound estimates of our results generalize many known results of modulation spaces. Moreover, under a partial non-degenerate assumptions on the symbol, we get the sharp asymptotic estimates of the unimodular Fourier multipliers.

关键词

幺模乘子 / &alpha / 模空间 / Besov空间

Key words

unimodular multipliers / α modulation space / Besov space

引用本文

导出引用
赵国平, 郭炜超. 幺模乘子在α模空间中的渐进估计. 数学学报, 2015, 58(1): 141-152 https://doi.org/10.12386/A2015sxxb0015
Guo Ping ZHAO, Wei Chao GUO. Asymptotic Estimates of Unimodular Modifiers on α Modulation Space. Acta Mathematica Sinica, Chinese Series, 2015, 58(1): 141-152 https://doi.org/10.12386/A2015sxxb0015

参考文献

[1] Bényi A., Gröchenig K., Okoudjou K. A., et al., Unimodular Fourier multiplier for modulation spaces, J. Funct. Anal., 2007, 246: 366-384.

[2] Bényi A., Gröchenig K., Heil C., et al., Modulation spaces and a class of bounded multilinear pseudodifferential operators, J. Operator Theory, 2005, 54(2): 387-400.

[3] Chen J. C., Fan D. S., Sun L. J., Asymptotic estimates for unimodular Fourier multipliers on modulation spaces, Discret Contin Dyn. Syst., 2012, 32: 467-485.

[4] Deng Q. Q., Ding Y., Sun L. J., Estimate for generalized unimodular multipliers on modulation spaces, Nonlinear Anal.: TMA, 2013, 85: 78-92.

[5] Dormar Y., On the spectral synthesis problem for (n-1)-dimensional subsets of Rn, n ≥ 2, Ark. Mat., 1971, 9: 23-37.

[6] Feichtinger H. G., Modulation spaces on locally compact Abelian group, Technical Report, University of Vienna, 1983. Published in: “Proc. Internat. Conf. on Wavelet and Applications”, 99-140, New Delhi Allied Publishers, India, 2003.

[7] Feichtinger H. G., Narimani G., Fourier multipliers of classical modulation spaces, Appl. Comput. Harmon. Anal., 2006, 21: 349-359.

[8] Gröbner p., Banachräume Glatter Funktionen und Zerlegungsmethoden, Doctoral Thesis, University of Vienna, Vienna, 1992

[9] Guo W. C., Chen J. C., Strichartz estimates on α-modulation spaces, Electr. J. Differential Equations, 2013, 2013(118): 1-13.

[10] Han J. S., Wang B. X., α-Modulation spaces (I) Scaling, embedding and algebraic properties, J. Math. Soc. Japan., in Press.

[11] Miyachi A., Nicola F., Rivetti S., et al., Estimates for unimodular Fourier multipliers on modulation spaces, Proc. Amer. Math. Soc., 2009, 137: 3869-3883.

[12] Walter L., Fourier transforms of surface-carried measures and differentiability of surface averages, Bull. Amer. Math. Soc., 1963, 69(6): 766-770.

[13] Wang B. X., Huo Z. H., Hao C. C., et al., Harmonic Analysis Method for Nonlinear Evolution Equations I, NJ: World Scientc, Hackensack, 2011.

[14] Wang B. X., Hudzik H., The global Cauchy problem for the NLS and NLKG with small rough data, J. Differential Equations, 2007, 232: 36-73.

[15] Wang B. X., Zhao L. F., Guo B. L., Isometric decomposition operators, function spaces Ep,qλ and applications to nonlinear evolution equations, J. Funct. Anal., 2006, 233(1): 1-39.

[16] Zhao G. P., Chen J. C., Guo W. C., Remarks on the unimodular fourier multipliers on α-modulation spaces, J. Funct. Spaces, 2014, 2014: doi:10.1155/2014/106267.

基金

国家自然科学基金资助项目(11271330); 浙江省博士后科研项目择优资助(BSH1302046)

PDF(495 KB)

Accesses

Citation

Detail

段落导航
相关文章

/