给出Jensen-二次函数方程f((x1+x2)/2,y1+y2)+f((x1+x2)/2,y1-y2)=f(x1,y1)+f(x1,y2)+f(x2,y1)+f(x2,y2)的一般解, 并研究了它的Hyers—Ulam稳定性.
Abstract
We obtain the general solution and stability of the Jensen-quadratic functional equation f((x1+x2)/2,y1+y2)+f((x1+x2)/2,y1-y2)=f(x1,y1)+f(x1,y2)+f(x2,y1)+f(x2,y2).
关键词
Hyers&mdash /
Ulam稳定性 /
混合三次-二次函数方程 /
Jensen-二次函数方程
{{custom_keyword}} /
Key words
Hyers-Ulam stability /
mixed cubic-quadratic function /
Jensen-quadratic functional equation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Aczel J., Dhombres J., Functional Equations in Several Variables, Cambridge Univ. Press, Cambridge, 1989.
[2] Bae J. H., Park W. G., On a cubic equation and a Jensen-quadratic equation, Abstr. Appl. Anal., 2007, Art. ID 45179, 10 pages.
[3] Brillouět-Bellout N., Brzdek J., Ciepliński K., On some recent developments in Ulam's type stability, Abstr. Appl. Anal., 2012, Art. ID 716936, 41 pages.
[4] Chang I. S., Jung Y. S., Stability of a functional equation deriving from cubic and quadratic functions, J. Math. Anal. Appl., 2003, 283: 491-500.
[5] Ji P., Liu W., On a Cauchy-quadratic functional equation and its Hyers-Ulam-Rassias stability, J. Shandong Univerity (Natural Science), to appear (in Chinese); Hyers-Ulam-Rassias stability, to appear.
[6] Jun K. W., Kim H. M., The generalized Hyers-Ulam-Rassias stability of cubic functional equation, J. Math. Anal. Appl., 2002, 274: 867-878.
[7] Jung S. M., Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer Optimization and Its Applications, 48, Springer, New York, 2011.
[8] Park W. G., Bae J. H., On a Cauchy-Jensen functional equation and its atability, J. Math. Anal. Appl., 2006, 323: 634-643.
[9] Prager W., Schwaiger J., Stability of the multi-Jensen equation, Bull. Korean Math. Soc., 2008, 45(1): 133-142.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}