齐次分数次积分算子在变指标函数空间上的有界性

檀健, 刘宗光

数学学报 ›› 2015, Vol. 58 ›› Issue (2) : 309-320.

PDF(480 KB)
PDF(480 KB)
数学学报 ›› 2015, Vol. 58 ›› Issue (2) : 309-320. DOI: 10.12386/A2015sxxb0030
论文

齐次分数次积分算子在变指标函数空间上的有界性

    檀健1, 刘宗光2
作者信息 +

Some Boundedness of Homogeneous Fractional Integrals onVariable Exponent Function Spaces

    Jian TAN1, Zong Guang LIU2
Author information +
文章历史 +

摘要

本文得到了齐次分数次积分算子在变指标Lebesgue空间、变指标Hardy 空间和变指标Herz 型Hardy 空间上的一些有界性结果.

Abstract

In this paper, the authors establish some boundedness of homogeneous fractional integrals on some variable exponent function spaces, such as variable Lebesgue spaces, variable Hardy spaces and variable Herz-type Hardy spaces.

关键词

变指标函数空间 / 原子分解 / 齐次分数次积分算子 / Lr-Dini条件

Key words

Variable function spaces / atomic decomposition / homogeneous fractional integrals / Lr-Dini condition

引用本文

导出引用
檀健, 刘宗光. 齐次分数次积分算子在变指标函数空间上的有界性. 数学学报, 2015, 58(2): 309-320 https://doi.org/10.12386/A2015sxxb0030
Jian TAN, Zong Guang LIU. Some Boundedness of Homogeneous Fractional Integrals onVariable Exponent Function Spaces. Acta Mathematica Sinica, Chinese Series, 2015, 58(2): 309-320 https://doi.org/10.12386/A2015sxxb0030

参考文献

[1] Capone C., Cruz-Uribe D., Fiorenza A., The fractional maximal operators and fractional integrals on variable Lp spaces, Rev. Mat. Iberoam., 2007, 23: 743-770.

[2] Cruz-Uribe D., Fiorenza A., Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Birkhäuser, Basel, 2013.

[3] Cruz-Uribe D., Fiorenza A., Martell J., et al., The boundedness of classical operators on variable Lp spaces, Ann. Acad. Sci. Fenn. Math., 2006, 31: 239-264.

[4] Cruz-Uribe D., Wang L., Variable Hardy spaces, Indiana Univ. Math. J., 2014, 63(2): 447-493.

[5] Diening L., Harjulehto P., Hästö P., et al., Maximal functions in variable exponent spaces: limiting cases of the exponent, Ann. Acad. Sci. Fenn. Math., 2009, 34: 503-522.

[6] Diening L., Harjulehto P., Hästö P., et al., Lebesgue and Sobolev Spaces with Variable Exponents, Springer, Heidelberg, 2011.

[7] Ding Y., Lu S. Z., Homogeneous fractional integrals on Hardy spaces, Tohoku Math. J., 2000, 52: 153-162.

[8] Izuki M., Boundedness of commutators on Herz spaces with variable exponent, Rend. Circ. Mat. Palermo, 2010, 59: 199-213.

[9] Izuki M., Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization, Anal. Math., 2010, 36: 33-50.

[10] Ková?ik O., Rákosník J., On spaces Lp(x) and Wk,p(x), Czechoslovak Math. J., 1991, 41: 592-618.

[11] Lu S. Z., Ding Y., Yan D. Y., Singular Integrals and Related Topics, World Scientific Press, Beijing, 2011.

[12] Nakai E., Sawano Y., Hardy spaces with variable exponents and generalized Campanato spaces, J. Funct. Anal., 2012, 262: 3665-3748.

[13] Sawano Y., Atomic decompositions of Hardy spaces with variable exponents and its application to bounded linear operators, Integr. Equat. Oper. Th., 2013, 77: 123-148.

[14] Stein E. M., Singular Integral and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, New Jersey, 1970.

[15] Taibleson M., Weiss G., The molecular characterization of certain Hardy spaces, Astérisque, 1980, 77: 67- 151.

[16] Wang H. B., Liu Z. G., The Herz-type Hardy spaces with variable exponent and their applications, Taiwanese J. Math., 2012, 16: 1363-1389.

[17] Zhang P., Boundedness of fractional integral on Herz-type Hardy spaces (in Chinese), J. Beijing Normal Univ. (Natur. Sci.), 2000, 36: 290-296.

基金

国家自然科学基金资助项目(11171345,51234005);教育部博士点基金资助项目(20120023110003)

PDF(480 KB)

Accesses

Citation

Detail

段落导航
相关文章

/