单群2G2(32n+1)的拟刻画

李立莉

数学学报 ›› 2015, Vol. 58 ›› Issue (3) : 359-364.

PDF(305 KB)
PDF(305 KB)
数学学报 ›› 2015, Vol. 58 ›› Issue (3) : 359-364. DOI: 10.12386/A2015sxxb0036
论文

单群2G2(32n+1)的拟刻画

    李立莉
作者信息 +

Quasirecognition of the Simple Group 2G2(32n+1)

    Li Li LI
Author information +
文章历史 +

摘要

G为有限群, 且满足M(G)=M(2G2(32n+1)),则G必有正规子群同构于2G2(32n+1). 特别地,若|G|=|2G2(32n+1)|, 则G2G2(32n+1).

Abstract

Let G be finite group such that M(G) = M(2G2(32n+1)). Then G has a normal subgroup isomorphic to 2G2(32n+1). Especially, if |G| = |2G2(32n+1)|, then G2G2(32n+1).

关键词

单群 / 极大交换子群 / 阶分量

Key words

simple group / maximal abelian subgroup / order component

引用本文

导出引用
李立莉. 单群2G2(32n+1)的拟刻画. 数学学报, 2015, 58(3): 359-364 https://doi.org/10.12386/A2015sxxb0036
Li Li LI. Quasirecognition of the Simple Group 2G2(32n+1). Acta Mathematica Sinica, Chinese Series, 2015, 58(3): 359-364 https://doi.org/10.12386/A2015sxxb0036

参考文献

[1] Ahanjideh N., Iranamnesh A., A characterization of by the set of orders of maximal abelian subgroups, Int. J. Algebr Comput., 2009, 19: 191-211.

[2] Chen G. Y., A New Characterization of Sporadic Simple Groups, Algebra Colloq., 1996, 3: 49-58.

[3] Chen G. Y., A characterization of alternating groups by the set of orders of maximal abelian subgroups, Siberian Math. J., 2006, 47(3): 594-596.

[4] Han Z. J., Chen G. Y., Guo X. Y., A characterization theorem for sporadic simple groups, Siberian Math. J., 2008, 49(6): 1138-1146.

[5] Ke S., Sun Q., Talk about the Diophantine Equation, Shanghai Education Publishing, Shanghai, 1980.

[6] Li L. L., Chen G. Y., A new characterization of the simple group, Siberian Math. J., 2012, 53(2): 243-247.

[7] Li L. L., Quasirecognition of the simple group G2(3n), Acta Math. Appl. Sin. C, 2013, 56(2): 257-262.

[8] Wang L. H., Characterization of Some Classes of Finite Simple Groups (in Chinese), Thesis for Master of Science, Southewest Normal University, Chongqing, 2000.

[9] Willians J. S., Prime graph components of finite groups, J. Algebra, 1981, 69: 487-513.

基金

国家自然科学基金(11171364,11471266,U1204101);中国博士后科学基金(2014M562264);广东省自然科学基金(2014A030307016);广东省青年人才创新项目(2014KQNCX189)湛江师范学院博士专项基金资助项目(ZL1108)

PDF(305 KB)

Accesses

Citation

Detail

段落导航
相关文章

/