Markov随机分枝树节点的年龄结构

王汉兴, 杜瑞杰, 傅云斌, 颜云志

数学学报 ›› 2015, Vol. 58 ›› Issue (3) : 435-446.

PDF(473 KB)
PDF(473 KB)
数学学报 ›› 2015, Vol. 58 ›› Issue (3) : 435-446. DOI: 10.12386/A2015sxxb0044
论文

Markov随机分枝树节点的年龄结构

    王汉兴1, 杜瑞杰1,2, 傅云斌1, 颜云志1
作者信息 +

The Age Structure of Nodes in Markov Random Branching Tree

    Han Xing WANG1, Rui Jie DU1,2, Yun Bin FU1, Yun Zhi YAN1
Author information +
文章历史 +

摘要

研究了子节点到达过程为时齐泊松过程的随机分枝树,主要给出了一些特征量的解析分析:如分枝树中的实节点数和虚节点数,各代节点数,单个实连通分支的节点数;分枝树中处在不同年龄段的实节点数和虚节点数,单个实连通分支中处在不同年龄段的实节点数,各代节点中处在不同年龄段的实节点数;分枝树中适龄生的节点数和实节点数、超龄生的节点数和实节点数.

Abstract

This paper studies the random branching tree, on which child nodes arrival process is time-homogeneous Poisson process, mainly gets analytical analysis of some characteristics: the number of real nodes and the number of virtual nodes in branching tree, the number of each generation in branching tree, the number of real nodes in every connected component; the number of real nodes and the number of virtual nodes in different age interval in whole branching tree, the number of real nodes in different age interval on a single real component, the number of real nodes in different age interval on each generation of branching tree; the number of nodes or real nodes born at suit-age or at overage.

关键词

随机图 / 分枝过程 / 随机分枝树 / 年龄结构

Key words

random graph / branching process / random branching tree / age structure

引用本文

导出引用
王汉兴, 杜瑞杰, 傅云斌, 颜云志. Markov随机分枝树节点的年龄结构. 数学学报, 2015, 58(3): 435-446 https://doi.org/10.12386/A2015sxxb0044
Han Xing WANG, Rui Jie DU, Yun Bin FU, Yun Zhi YAN. The Age Structure of Nodes in Markov Random Branching Tree. Acta Mathematica Sinica, Chinese Series, 2015, 58(3): 435-446 https://doi.org/10.12386/A2015sxxb0044

参考文献

[1] Fu Y. B., Yan Y. Z., Tang Y., et al., A kind of model for birth-death process, Acta Mathematicae Applicatae Sinica, English Series, 2013, in press.

[2] Harris T. E., The Theory of Branching Processes, Springer-Verlag, Berlin, 1963.

[3] Li Y. Q., Li X., Liu Q. S., A random walk with a branching system in random environments, Sci. China, Ser. A, 2007, 37(3): 341-347 (in Chinese).

[4] Li Y. Q., Liu Q. S., Age-dependent branching processes in random environments, Sci. China, Ser. A, 2008, 38(7): 799-818 (in Chinese).

[5] Smith W. L., Wilkinson W. E., On branching processes in random environments, Ann. Mat. Statist, 1969, 40: 814-827.

[6] Wang H. X., Extinction of P - S - D branching processes in random environments, J. Appl. Prob., 1999, 36(1): 146-154.

[7] Wang H. X., Multitype branching close walks in random environments, Chinese Science Bulletin, 1995, 40(7): 586-589 (in Chinese).

[8] Wang H. X., Dai Y. L., Population-size-dependent branching processes in Markovian random environments, Chinese Science Bulletin, 1998, 43(8): 635-638.

[9] Wang H. X., Fu Y. B., Yan Y. Z., et al., Birth-death branching tree with age-dependent birth-rate, Sci. Sin. Math., 2013, 43: 383-398 (in Chinese).

[10] Wang H. X., Zhao F., Lu J. Y., A note on asymptotic behavior of Galton-Watson branching processes in random environments, J. Shanghai University (English Edition), 2006, 10(2): 95-99.

基金

国家自然科学基金资助项目(60872060);上海市自然科学基金资助项目(12ZR1421000)及上海市教委创新项目(14YZ152,12ZZ193)

PDF(473 KB)

216

Accesses

0

Citation

Detail

段落导航
相关文章

/