Bernstein算子对具有奇性函数的加权同时逼近

虞旦盛

数学学报 ›› 2015, Vol. 58 ›› Issue (4) : 535-550.

PDF(439 KB)
PDF(439 KB)
数学学报 ›› 2015, Vol. 58 ›› Issue (4) : 535-550. DOI: 10.12386/A2015sxxb0055
论文

Bernstein算子对具有奇性函数的加权同时逼近

    虞旦盛
作者信息 +

Weighted Simultaneous Approximation by Bernstein Operators for Functions with Singularities

    Dan Sheng YU
Author information +
文章历史 +

摘要

利用在端点用Lagrange插值代替函数值的方法构造了一种新的Bernstein算子,这种新的算子可以用以逼近端点具有奇性的函数,并给出了它同时逼近的正定理.

Abstract

We construct a new type of Bernstein operators by using Lagrange interpolation to replace the values of f(x) at endpoints, which enable us to approximate the functions with singularities. The direct result of the weighted pointwise simultaneous approximation of the new operators is given.

关键词

Bernstein算子 / 加权同时逼近 / 奇性函数 / 正定理

Key words

Bernstein operators / weighted pointwise approximation / functions with singularities / direct theorem

引用本文

导出引用
虞旦盛. Bernstein算子对具有奇性函数的加权同时逼近. 数学学报, 2015, 58(4): 535-550 https://doi.org/10.12386/A2015sxxb0055
Dan Sheng YU. Weighted Simultaneous Approximation by Bernstein Operators for Functions with Singularities. Acta Mathematica Sinica, Chinese Series, 2015, 58(4): 535-550 https://doi.org/10.12386/A2015sxxb0055

参考文献

[1] Berens H., Lorentz G., Inverse theorems for Bernstein polynomials, Indiana Univ. Math. J., 1971, 21(1): 693-708.

[2] Butzer P. L., Linear combinations of Bernstein polynomials, Canad. J. Math., 1953, 5(2): 559-567.

[3] Della Vechhia B., Mastroianni G., Szabados J., Weighted approximation of functions with endpoint and inner singularities by Bernstein operators, Acta Math. Hungar., 2004, 103(1-2): 19-41.

[4] Della Vechhia B., Mastroianni G., Szabados J., Generalized Bernstein polynomials with Pollaczek weight, J. Approx. Theory, 2009, 159(2): 180-196.

[5] Ditzian Z., A global inverse theorem for combinations of Bernstein polynomials, J. Approx. Theory, 1979, 26(3): 277-292.

[6] Ditzian Z., Direct estimate for Bernstein polynomials, J. Approx. Theory, 1994, 79: 165-166.

[7] Ditzian Z., Totik V., Moduli of Smoothness, Springer-Verlag, Berlin, New York, 1987.

[8] Guo S. S., Chen Y.W., The pointwise results of weighted simultaneous approximation by Bernstein operator, Acta Math. Appl. Sinica, 2005, 28(4): 466-481.

[9] Guo S. S., Li C. X., Liu X. W., Pointwise approximation for linear combinations of Bernstein operators, J. Approx. Theory, 2000, 107(1): 109-120.

[10] Guo S. S., Tong H., Zhang G., Pointwise weighted approximation by Bernstein operators, Acta Math. Hungar., 2003, 101(4): 293-311.

[11] Lorentz G. G., Bernstein Polynomial, University of Toronto Press (Toronto), 1953.

[12] Mastroianni G., Totik V., Best approximation and moduli of smoothness for doubling weights, J. Approx. Theory, 2001, 110(2): 180-199.

[13] Wei B. R., Zhao Y., Weighted approximation of functions with singularities by Bernstein operators, J. Zhejiang Univ. Science A, 2008, 9(10): 1451-1456.

[14] Xie L. S., Pointwise simultaneous approximation by combinations of Bernstein operators, J. Approx. Theory, 2005, 137(1): 1-21.

[15] Xie L. S., The saturation class for linear combinations of Bernstein operators, Arch. Math., 2008, 91(1): 86-96.

[16] Yu D. S., Weighted approximation of functions with singularities by combinations of Bernstein operators, Appl. Math. Comput., 2008, 206(2): 906-918.

[17] Yu D. S., Zhao D. J., Approximation of functions with singularities bu truncated Bernstein operators, Southeast Bull. Math., 2006, 30(6): 1189-1178.

[18] Zhou D. X., Rate of convergence for Bernstein operators with Jacobi weights, Acta Mathematica Sinica, Chinese Series, 1992, 35(3): 331-338.

[19] Zhou D. X., On smoothness characterized by Bernstein type operators, J. Approx. Theory, 1994, 81(3): 303-315.
PDF(439 KB)

303

Accesses

0

Citation

Detail

段落导航
相关文章

/