Derivations and Automorphisms of a Class of W-Algebras
Wei WANG1,2, Yong Ping WU3, Chun Guang XIA4
Author information+
1. School of Mathematics and Computer Science, Ningxia University, Yinchuan 750021, P. R. China;
2. Department of Mathematics, Tongji University, Shanghai 200092, P. R. China;
3. School of Mathematics and Computer Science, Longyan University, Longyan 364000, P. R. China;
4. Department of Mathematics, China University of Mining and Technology, Xuzhou 221116, P. R. China
A class of W-algebras is studied, which contains the generalized centerless Virasoro subalgebra. In this paper, the derivations and automorphisms of this Lie algebra are precisely determined.
Wei WANG, Yong Ping WU, Chun Guang XIA.
Derivations and Automorphisms of a Class of W-Algebras. Acta Mathematica Sinica, Chinese Series, 2015, 58(4): 559-570 https://doi.org/10.12386/A2015sxxb0057
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Farnsteiner R. Derivations and central extensions of finitely generated graded Lie algebra, J. Algegra, 1988, 118: 33-45.
[2] Gao S. L., Jiang C. B., Pei Y. F., Low-dimensional cohomology groups of the Lie algebra W(a, b), Commun. Alg., 2011, 39: 397-421.
[3] Kac V. G., Raina A., Bombay Lectures on Highest Weight Representations of Infinite-Dimensional Lie Algebras, Adv. Ser. Math. Phys., 1987, 2: World Sci.
[4] Liu D., Gao S. L., Zhu L. S., Classification of irreducible weight modules over W-algebra W(2, 2), J. Math. Phys., 2008, 49: 113503.
[5] Mathieu O., Classification of Harish-Chandra modules over the Virasoro Lie algebra, Invent. Math., 1992, 107: 225-234.
[6] Su Y. C., A classification of indecomposable SL2(C)-modules and a conjecture of Kac on irreducible modules over the Virasoro algebra, J. Algebra, 1993, 161: 33-46.
[7] Su Y. C., Xu Y., Yue X. Q., Indecomposable modules of the intermediate series over W(a, b), Sci. China Math., 2014, 57: 275-291.
[8] Su Y. C., Zhao K. M., Generalized Virasoro and super-Virasoro algebras and modules of the intermediate series, J. Algebra, 2002, 252: 1-19.
[9] Tan S. B., Zhang X. F., Automorphisms and Verma modules for generalized Schrödinger-Virasoro algebras, J. Algebra, 2009, 322: 1379-1394.
[10] Wang W., Li J. B., Xin B., Central extensions and derivations of generalized Schrödinger-Virasoro, Algebra Colloq., 2012, 19: 735-744.
[11] Wang W., Wu Y. P., Xia C. G., Second cohomology group of extended W-algebras, Front. Math. China, 2011, 6: 745-758.
[12] Zamolodchikov A. B., Infinite additional symmetries in two-dimensional conformal quantum field theory, Theor. Math. Phys., 1985, 65: 1205-1213.
[13] Zhang W., Dong C. Y., W-Algebra W(2, 2) and the vertex operator algebra L(1/2, 0) ⊗ L(1/2, 0), Comm. Math. Phys., 2009, 285: 991-1004.