一类W-代数的导子和自同构

王伟, 巫永萍, 夏春光

数学学报 ›› 2015, Vol. 58 ›› Issue (4) : 559-570.

PDF(435 KB)
PDF(435 KB)
数学学报 ›› 2015, Vol. 58 ›› Issue (4) : 559-570. DOI: 10.12386/A2015sxxb0057
论文

一类W-代数的导子和自同构

    王伟1,2, 巫永萍3, 夏春光4
作者信息 +

Derivations and Automorphisms of a Class of W-Algebras

    Wei WANG1,2, Yong Ping WU3, Chun Guang XIA4
Author information +
文章历史 +

摘要

讨论了一类W-代数,这类李代数包含无中心的广义Virasoro子代数.本文确定了这类李代数的导子和自同构.

Abstract

A class of W-algebras is studied, which contains the generalized centerless Virasoro subalgebra. In this paper, the derivations and automorphisms of this Lie algebra are precisely determined.

关键词

W-代数 / 导子 / 自同构

Key words

W-algebra / derivation / automorphism

引用本文

导出引用
王伟, 巫永萍, 夏春光. 一类W-代数的导子和自同构. 数学学报, 2015, 58(4): 559-570 https://doi.org/10.12386/A2015sxxb0057
Wei WANG, Yong Ping WU, Chun Guang XIA. Derivations and Automorphisms of a Class of W-Algebras. Acta Mathematica Sinica, Chinese Series, 2015, 58(4): 559-570 https://doi.org/10.12386/A2015sxxb0057

参考文献

[1] Farnsteiner R. Derivations and central extensions of finitely generated graded Lie algebra, J. Algegra, 1988, 118: 33-45.

[2] Gao S. L., Jiang C. B., Pei Y. F., Low-dimensional cohomology groups of the Lie algebra W(a, b), Commun. Alg., 2011, 39: 397-421.

[3] Kac V. G., Raina A., Bombay Lectures on Highest Weight Representations of Infinite-Dimensional Lie Algebras, Adv. Ser. Math. Phys., 1987, 2: World Sci.

[4] Liu D., Gao S. L., Zhu L. S., Classification of irreducible weight modules over W-algebra W(2, 2), J. Math. Phys., 2008, 49: 113503.

[5] Mathieu O., Classification of Harish-Chandra modules over the Virasoro Lie algebra, Invent. Math., 1992, 107: 225-234.

[6] Su Y. C., A classification of indecomposable SL2(C)-modules and a conjecture of Kac on irreducible modules over the Virasoro algebra, J. Algebra, 1993, 161: 33-46.

[7] Su Y. C., Xu Y., Yue X. Q., Indecomposable modules of the intermediate series over W(a, b), Sci. China Math., 2014, 57: 275-291.

[8] Su Y. C., Zhao K. M., Generalized Virasoro and super-Virasoro algebras and modules of the intermediate series, J. Algebra, 2002, 252: 1-19.

[9] Tan S. B., Zhang X. F., Automorphisms and Verma modules for generalized Schrödinger-Virasoro algebras, J. Algebra, 2009, 322: 1379-1394.

[10] Wang W., Li J. B., Xin B., Central extensions and derivations of generalized Schrödinger-Virasoro, Algebra Colloq., 2012, 19: 735-744.

[11] Wang W., Wu Y. P., Xia C. G., Second cohomology group of extended W-algebras, Front. Math. China, 2011, 6: 745-758.

[12] Zamolodchikov A. B., Infinite additional symmetries in two-dimensional conformal quantum field theory, Theor. Math. Phys., 1985, 65: 1205-1213.

[13] Zhang W., Dong C. Y., W-Algebra W(2, 2) and the vertex operator algebra L(1/2, 0) ⊗ L(1/2, 0), Comm. Math. Phys., 2009, 285: 991-1004.

基金

国家自然科学基金(11201253, 11371278,11431010, 11401570); 博士后科学基金(2014M551440);江苏省自然科学基金(BK20140177);中央高校基本科研业务费专项资金资助项目(2014QNA68)

PDF(435 KB)

Accesses

Citation

Detail

段落导航
相关文章

/