模空间的正则性指标及其应用

黄强, 卜瑞

数学学报 ›› 2015, Vol. 58 ›› Issue (4) : 571-576.

PDF(475 KB)
PDF(475 KB)
数学学报 ›› 2015, Vol. 58 ›› Issue (4) : 571-576. DOI: 10.12386/A2015sxxb0058
论文

模空间的正则性指标及其应用

    黄强, 卜瑞
作者信息 +

Regularity Exponent of Modulation Space and Its Application

    Qiang HUANG, Rui BU
Author information +
文章历史 +

摘要

用模空间的一种复合指标刻画了Navier—Stokes方程在模空间的适定性情况,得到了Navier—Stokes方程在模空间适定性和不适定的临界条件.

Abstract

We use a composite concept of Modulation space to describe the conditions of well and ill posedness of Navier-Stokes equations in Modulation space. Finally we get sharp conditions about this problem.

关键词

模空间 / 正则性指标 / 适定性

Key words

modulation space / regularity exponent / well posedness

引用本文

导出引用
黄强, 卜瑞. 模空间的正则性指标及其应用. 数学学报, 2015, 58(4): 571-576 https://doi.org/10.12386/A2015sxxb0058
Qiang HUANG, Rui BU. Regularity Exponent of Modulation Space and Its Application. Acta Mathematica Sinica, Chinese Series, 2015, 58(4): 571-576 https://doi.org/10.12386/A2015sxxb0058

参考文献

[1] Bejenaru I., Tao T., Sharp well-posedness and ill-posedness result for a quadratic nonlinear Schödinger Equation, J. Funct. Anal., 2006, 233: 228-259.

[2] Bényi A., Gröchenig K., Okoudjou K., et al., Unimodular Fourier multipliers for modulation spaces, J. Funct. Anal., 2007, 246: 366-384.

[3] Cazenave T., Semilinear Schödinger Equations, Courant Lecture Notes in Mathematics, Vol. 10, University Courant Institute of Mathematical Sciences, New York, 2003.

[4] Cazenave T., Weissler F., Critical nonlinear Schödinger Equation, J. Non. Anal. TMA, 1990, 14: 807-836.

[5] Chen J., Fan D., Sun L., Asymptotic estimates for unimodular Fourier multipliers on modulation space, Discret. Contin. Dyn. Syst., 2012, 32: 467-485.

[6] Feichtinger H., Modulation space on locally compact Abeliean group, Technical Report, University of Vienna, Vienna, 1983.

[7] Grafakos L., Classical and Modern Fourier Analysis, Prentice Hall, NJ, New York, 2003.

[8] Iwabuchi T., Navier-Stokes equations and nonlinear heat equations in modulation space with negative derivative indices, J. Diff. Equ., 2010, 248: 1972-2002.

[9] Miyachi A., Nicola F., Riveti S., Estimates for unimodular Fourier multipliers on modulation spaces, Proc. Amer. Math. Soc., 2009, 137: 3869-3883.

[10] Ruzhansky M., Sugimoto M., Wang B., Modulation spaces and nonlinear evolution equations, Progress in Math., 2012, 301: 267-283.

[11] Wang B., Hao C., Huo C., Harmonic Analysis Method for Nonlinear Evolution Equations I, Hackensack, NJ: World Scientfic, Hackensack, 2011.

[12] Wang B., Huang C., Frequency-uniform decomposition method for the generalied BO, Kdv and NLS equations, J. Diff. Equ., 2007, 239: 213-250.

[13] Wang B., Hudizk H., The global Cauchy problem for NLS and NLKG with small rough data, J. Diff. Equ., 2007, 232: 36-73.

[14] Wang B., Zhao L., Guo B., Isometric decomposition operators, function space Ep,qλ and applications to nonlinear evolution equations, J. Funct. Anal., 2006, 233: 1-39.

基金

国家自然科学基金(11271330, 11471288);浙江省自然科学基金(LY14A010015);基本科研业务费专项资助项目

PDF(475 KB)

Accesses

Citation

Detail

段落导航
相关文章

/