Ramanujan 循环和的一个注记

雒秋明

数学学报 ›› 2015, Vol. 58 ›› Issue (4) : 621-634.

PDF(404 KB)
PDF(404 KB)
数学学报 ›› 2015, Vol. 58 ›› Issue (4) : 621-634. DOI: 10.12386/A2015sxxb0064
论文

Ramanujan 循环和的一个注记

    雒秋明
作者信息 +

A Note for Ramanujan's Circular Summation Formula

    Qiu Ming LUO
Author information +
文章历史 +

摘要

推广了Ramanujan 循环和,给出了一个基本的证明方法,还给出了一些应用并得到一些新的 theta 函数恒等式.

Abstract

We generalized Ramanujan's circular summation formula and give an elementary proof of them. We also show some applications and obtain some new identities of theta functions.

关键词

Ramanujan 循环和 / 推广 / theta 函数恒等式

Key words

Ramanujan's circular summation / generalization / theta function identities

引用本文

导出引用
雒秋明. Ramanujan 循环和的一个注记. 数学学报, 2015, 58(4): 621-634 https://doi.org/10.12386/A2015sxxb0064
Qiu Ming LUO. A Note for Ramanujan's Circular Summation Formula. Acta Mathematica Sinica, Chinese Series, 2015, 58(4): 621-634 https://doi.org/10.12386/A2015sxxb0064

参考文献

[1] Ahlgren S., The sixth, eighth, ninth and tenth powers of Ramanujan theta function, Proc. Amer. Math. Soc., 2000, 128: 1333-1338.

[2] Andrews G. E., Berndt B. C., Ramanujan's Lost Notebook Part III, Springer-Verlag, New York, 2012.

[3] Bellman R., A brief introduction to theta functions, Holt, Rinehart and Winston, New York, 1961.

[4] Berndt B. C., Ramanujan's Notebooks Part III, Springer-Verlag, New York, 1991.

[5] Berndt B. C., Ramanujan's Notebooks Part V, Springer-Verlag, New York, 1998.

[6] Boon M., Glasser M. L., Zak J., et al., Additive decompositions of v-functions of multiple arguments, J. Phys. A. Math. Gen., 1982, 15: 3439-3440.

[7] Borwein J. M., Borwein P. B., A cubic counterpart of Jacobi's identity and the AGM, Trans. Amer. Math. Soc., 1991, 323: 691-701.

[8] Cai Y., Chen S., Luo Q. M., Some circular summation formulas for the theta functions, Bound. Value Probl., 2013, 59.

[9] Cai Y., Bi Y. Q., Luo Q. M., Some new circular summation formulas of theta functions, Integral Transform. Spec. Funct., 2014, 25: 497-507.

[10] Chan S. H., Liu Z. G., On a new circular summation of theta functions, J. Number Theory, 2010, 130: 1190-1196.

[11] Chan H. H., Liu Z. G., Ng S. T., Circular summation of theta functions in Ramanujan's Lost Notebook, J. Math. Anal. Appl., 2006, 316: 628-641.

[12] Chandrasekharan K., Elliptic Functions, Springer-Verlag, Berlin, Heidelberg, 1985.

[13] Chua K. S., The root lattice An* and Ramanujan's circular summation of theta functions, Proc. Amer. Math. Soc., 2002, 130: 1-8.

[14] Chua K. S., Circular summation of the 13th powers of Ramanujan's theta function, Ramanujan J., 2001, 5: 353-354.

[15] Gasper G., Rahma M., Basic Hypergeometric Series, Cambridge Unversity Press, Cambridge, 2004.

[16] Liu Z. G., Some inverse relations and theta function identities, Int. J. Number Theory, 2012, 8: 1977-2002.

[17] Liu X. F., Luo Q. M., A note for alternating Ramanujan's circular summation formula, Forum Math., DOI 10.1515/forum-2013-0148, 2015.

[18] Montaldi E., Zucchelli G., Additive decomposition for the product of two v3 functions and modular equations, J. Math. Phys., 1989, 30: 2012-2015.

[19] Murayama T., On an identity of theta functions obtained from weight enumerators of linear codes, Proc. Japan Acad., Ser. A, 1998, 74: 98-100.

[20] Ono K., On the circular summation of the eleventh powers of Ramanujan's theta function, J. Number Theory, 1999, 76: 62-65.

[21] Ramanujan S., The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi, 1988.

[22] Rangachari S. S., On a result of Ramanujan on theta functions, J. Number Theory, 1994, 48: 364-372.

[23] Shen L. C., On the additive formula of the theta functions and a collection of Lambert series pertaining to the modular equations of degree 5, Trans. Amer. Math. Soc., 1994, 345: 323-345.

[24] Son S. H., Circular summation of theta functions in Ramanujan's Lost Notebook, Ramanujan J., 2004, 8: 235-272.

[25] Whittaker E. T., Watson G. N., A Course of Modern Analysis, Cambridge University Press, 1927, 4th ed, Reprinted, 1963.

[26] Xu P., An elementary proof of Ramanujan's circular summation formula and its generalizations, Ramanujan J., 2012, 27: 409-417.

[27] Zeng X. F., A generalized circular summation of theta function and its application, J. Math. Anal. Appl., 2009, 56: 698-703.

[28] Zhou Y., Luo Q. M., Circular summation formulas for theta function v4(z|τ), Adv. Difference Equ., 2014, 2014: 243.

[29] Zhu J. M., An alternate circular summation formula of theta functions and its applications, Appl. Anal. Discrete Math., 2012, 6: 114-125.

[30] Zhu J. M., A note on a generalized circular summation formula of theta functions, J. Number Theory, 2012, 132: 1164-1169.

基金

重庆市自然科学基金(CSTC2011JJA00024)及市教委科技研究项目(KJ120625);重庆师范大学自然科学重点项目(10XLR017, 2011XLZ07)

PDF(404 KB)

Accesses

Citation

Detail

段落导航
相关文章

/