一类分担有理函数的亚纯函数的唯一性

仇惠玲

数学学报 ›› 2015, Vol. 58 ›› Issue (4) : 685-690.

PDF(351 KB)
PDF(351 KB)
数学学报 ›› 2015, Vol. 58 ›› Issue (4) : 685-690. DOI: 10.12386/A2015sxxb0070
论文

一类分担有理函数的亚纯函数的唯一性

    仇惠玲
作者信息 +

Uniqueness of Some Meromorphic Functions that Sharing a Rational Function

    Hui Ling QIU
Author information +
文章历史 +

摘要

利用复分析的值分布理论研究了亚纯函数的唯一性,给出了下面的结果.设q(z)为k次有理函数,f(z)和g(z)是两个超越亚纯函数, fgq没有共同的极点. n是正整数且n≥max{11,k+1}. 如果fn(z)f'(z), gn(z)g'(z)分担有理函数q(z) CM, 则 f(z)=c1ec∫q(z)dz,g(z)=c2e-c∫q(z)dz, 这里c1,c2c是三个常数且满足 (c1c2)n+1c2=-1; 或者f(z)≡tg(z),其中t是一个常数满足tn+1=1.

Abstract

We use the theory of value distribution and study the uniqueness of meromorphic functions. We will prove the following result: Let q(z) be a rational function of degree k, f(z) and g(z) be two transcendental meromorphic functions, and let q have no same poles as fg, n be a positive integer and n ≥ max{11, k + 1}. If fn(z)f'(z) and gn(z)g'(z) share q(z) CM, then either f(z) = c1ec∫q(z)dz, g(z) = c2e-c∫q(z)dz, where c1, c2 and c are three constants satisfying (c1c2)n+1c2 = -1, or f(z) ≡ tg(z) for a constant t such that tn+1 = 1.

关键词

亚纯函数 / 有理函数 / 零点 / 极点

Key words

meromorphic function / rational function / zero point / pole point

引用本文

导出引用
仇惠玲. 一类分担有理函数的亚纯函数的唯一性. 数学学报, 2015, 58(4): 685-690 https://doi.org/10.12386/A2015sxxb0070
Hui Ling QIU. Uniqueness of Some Meromorphic Functions that Sharing a Rational Function. Acta Mathematica Sinica, Chinese Series, 2015, 58(4): 685-690 https://doi.org/10.12386/A2015sxxb0070

参考文献

[1] Fang M. L., Qiu H. L., Meromorphic functions that share fixed-points, J. Math. Anal. Appl., 2000, 268: 426-439.

[2] Hayman W. K., Meromorphic Functions, Clarendon Press, Oxford, 1964.

[3] Mues E., Reinders M., functions sharing one value and unique range sets, Kodai Math. J., 1995, 18: 515-522.

[4] Qiu H. L., Further Results of meromorphic functions that share a polynomial, Chinese Quarterly J. Math., 2011, 26(3): 448-452.

[5] Qiu H. L., Xu Y., Meromorphic functions that share polynomials, J. Nanjing University, Natural Sciences, 2008, 44(4): 379-384.

[6] Yang C. C., On deficiencies of differential polynomials II, Math. Z., 1972, 125: 107-112.

[7] Yang L., Value Distribution Theory, Springer-Verlag, Berlin, 1993.

[8] Yang C. C., Hua X. H., Uniqueness and value-sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math., 1997, 22: 395-406.

[9] Yi H. X., Yang C. C., Unicity Theory of Meromorphic Functions, Science Press, Berlin, 1995.

基金

国家自然科学基金资助项目(11371149)

PDF(351 KB)

215

Accesses

0

Citation

Detail

段落导航
相关文章

/