利用复分析的值分布理论研究了亚纯函数的唯一性,给出了下面的结果.设q(z)为k次有理函数,f(z)和g(z)是两个超越亚纯函数, fg与q没有共同的极点. n是正整数且n≥max{11,k+1}. 如果fn(z)f'(z), gn(z)g'(z)分担有理函数q(z) CM, 则 f(z)=c1ec∫q(z)dz,g(z)=c2e-c∫q(z)dz, 这里c1,c2 和c是三个常数且满足 (c1c2)n+1c2=-1; 或者f(z)≡tg(z),其中t是一个常数满足tn+1=1.
Abstract
We use the theory of value distribution and study the uniqueness of meromorphic functions. We will prove the following result: Let q(z) be a rational function of degree k, f(z) and g(z) be two transcendental meromorphic functions, and let q have no same poles as fg, n be a positive integer and n ≥ max{11, k + 1}. If fn(z)f'(z) and gn(z)g'(z) share q(z) CM, then either f(z) = c1ec∫q(z)dz, g(z) = c2e-c∫q(z)dz, where c1, c2 and c are three constants satisfying (c1c2)n+1c2 = -1, or f(z) ≡ tg(z) for a constant t such that tn+1 = 1.
关键词
亚纯函数 /
有理函数 /
零点 /
极点
{{custom_keyword}} /
Key words
meromorphic function /
rational function /
zero point /
pole point
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Fang M. L., Qiu H. L., Meromorphic functions that share fixed-points, J. Math. Anal. Appl., 2000, 268: 426-439.
[2] Hayman W. K., Meromorphic Functions, Clarendon Press, Oxford, 1964.
[3] Mues E., Reinders M., functions sharing one value and unique range sets, Kodai Math. J., 1995, 18: 515-522.
[4] Qiu H. L., Further Results of meromorphic functions that share a polynomial, Chinese Quarterly J. Math., 2011, 26(3): 448-452.
[5] Qiu H. L., Xu Y., Meromorphic functions that share polynomials, J. Nanjing University, Natural Sciences, 2008, 44(4): 379-384.
[6] Yang C. C., On deficiencies of differential polynomials II, Math. Z., 1972, 125: 107-112.
[7] Yang L., Value Distribution Theory, Springer-Verlag, Berlin, 1993.
[8] Yang C. C., Hua X. H., Uniqueness and value-sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math., 1997, 22: 395-406.
[9] Yi H. X., Yang C. C., Unicity Theory of Meromorphic Functions, Science Press, Berlin, 1995.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}