一个非线性方程的小素数解

李伟平, 赵峰, 王天泽

数学学报 ›› 2015, Vol. 58 ›› Issue (5) : 739-764.

PDF(622 KB)
PDF(622 KB)
数学学报 ›› 2015, Vol. 58 ›› Issue (5) : 739-764. DOI: 10.12386/A2015sxxb0075
论文

一个非线性方程的小素数解

    李伟平1, 赵峰2, 王天泽2
作者信息 +

Small Prime Solutions of an Nonlinear Equation

    Wei Ping LI1, Feng ZHAO2, Tian Ze WANG2
Author information +
文章历史 +

摘要

证明了整系数素变数方程a1p1+a2p22+a3p32+a4p42 = b 当整数 a1,..., a4, b满足一定条件时有素数解, 并给出了此方程有素数解时小素数解的上界.

Abstract

The present paper proved that the prime variables of nonlinear equation a1p1+a2p22+a3p32+a4p42 = b is soluble if integers a1,...,a4, b satisfy certain conditions, and it gave the upper bound for small prime solutions.

关键词

素数解 / 混合幂 / 圆法

Key words

prime solution / mixed power / circle method

引用本文

导出引用
李伟平, 赵峰, 王天泽. 一个非线性方程的小素数解. 数学学报, 2015, 58(5): 739-764 https://doi.org/10.12386/A2015sxxb0075
Wei Ping LI, Feng ZHAO, Tian Ze WANG. Small Prime Solutions of an Nonlinear Equation. Acta Mathematica Sinica, Chinese Series, 2015, 58(5): 739-764 https://doi.org/10.12386/A2015sxxb0075

参考文献

[1] Baker A., On some diophantine inequalities involving primes, J. Reine Angew. Math., 1967, 228: 166-181.

[2] Choi K. K. S., A numerical Baker's constant-Some explicit estimates for small prime solutions of linear equations, Bull. Hong Kong Math. Soc., 1997, 1: 1-19.

[3] Choi K. K. S., Liu M. C., Tsang K. M., Conditional bounds for small prime solutions of linear equations, Manuscripta Math., 1992, 74: 321-340.

[4] Davenport H., Multiplicative Number Theory, 2nd ed., Graduate Text in Math., Vol. 74, Spring-Verlag, New York, 1980.

[5] Graham S., Applications of Sieve Methods, Ph.D. Thesis, University of Michigan, Ann Arbor, 1977.

[6] Hua L. K., Some results in the additive prime number theory, Quart. J. Math. Oxford, 1938, 9: 68-80.

[7] Liu M. C., A bound for prime solutions of some ternary equations, Math. Z., 1985, 188: 313-323.

[8] Liu M. C., An improved bound for prime solutions of some ternary equations, Math. Z., 1987, 194: 573-583.

[9] Liu M. C., Tsang K. M., Small prime solutions of linear equations, Théorie des Nombres, J. M. De Koninck and C. Levesque (eds.), de Gruyter, Berlin, 1989: 595-624.

[10] Liu M. C., Tsang K. M., Recent progress on a problem of A. Baker, Séminaire de Théorie des Nombres, Paris, 1991-1992, Progr. Math. 116, Birkhäuser, 1993: 121-133.

[11] Liu M. C., Tsang K. M., Small prime solutions of some additive equations, Mh. Math., 1991, 111: 147-169.

[12] Liu M. C., Tsang K. M., On pairs of linear equations in three primes variables and an application to Goldbach's problem, J. Reine Angew. Math., 1989, 399: 109-136.

[13] Liu M. C., Wang T. Z., A numerical bound for small prime solutions of some ternary linear equations, Acta Arithmetica, 1998, 86(4): 343-383.

[14] Liu M. C., Wang T. Z., Wang Y., A numerical bound for small prime solutions of some ternary linear equations, II Asian J. Math., 2000, 4(4): 961-976.

[15] Vinogradov I. M., Representation of an odd number as the sums of three primes, Dokl. Akad. Nauk, 1937, SSSR, 15: 291-294.

[16] Wang T. Z., Chen J. R., On estimation of linear trigonometrical sums with primes, Acta Mathematica Sinica, Chinese Series, 1994, 37(1): 25-31.

[17] Xu Y. F., On sums of one prime and three squares of primes in short intervals, Acta Mathematica Sinica, Chinese Series, 2009, 52(3): 457-470.

基金

国家自然科学基金资助项目(11371122,11471112);2011河南省创新型科技人才队伍建设工程

PDF(622 KB)

Accesses

Citation

Detail

段落导航
相关文章

/