黎曼面局部Torelli定理的新证明

赵全庭, 饶胜

数学学报 ›› 2015, Vol. 58 ›› Issue (5) : 781-796.

PDF(664 KB)
PDF(664 KB)
数学学报 ›› 2015, Vol. 58 ›› Issue (5) : 781-796. DOI: 10.12386/A2015sxxb0078
论文

黎曼面局部Torelli定理的新证明

    赵全庭1, 饶胜2
作者信息 +

New Proofs of Local Torelli Theorems of Riemann Surfaces

    Quan Ting ZHAO1, Sheng RAO2
Author information +
文章历史 +

摘要

利用亏格为 g (g ≥2) 的闭曲面 的Teichmüller 空间上的 Kuranishi 坐标和 闭黎曼面上全纯1-形式的显式形变公式, 我们给出从 Teichmüller 空间到 Siegel上半空间的周期映射 的显示表达, 从而得到了闭黎曼面的两个局部Torelli 定理的新证明.

Abstract

By use of the Kuranishi coordinates on the Teichmüller space of closed surfaces of genus g with g ≥ 2 and the explicit deformation formulae of holomorphic one-forms on close Riemann surfaces, we give explicit expressions of the period map from the Teichmüller space to Siegel upper half space and obtain new proofs of two local Torelli theorems of closed Riemann surfaces.

关键词

黎曼模空间 / Kuranishi坐标 / 复结构形变 / Teichmü / ller理论 / 局部 Torelli定理

Key words

moduli space of Riemann surfaces / Kuranishi coordinate / deformation of complex structures / Teichmü / ller theory / local Torelli theorem

引用本文

导出引用
赵全庭, 饶胜. 黎曼面局部Torelli定理的新证明. 数学学报, 2015, 58(5): 781-796 https://doi.org/10.12386/A2015sxxb0078
Quan Ting ZHAO, Sheng RAO. New Proofs of Local Torelli Theorems of Riemann Surfaces. Acta Mathematica Sinica, Chinese Series, 2015, 58(5): 781-796 https://doi.org/10.12386/A2015sxxb0078

参考文献

[1] Andreotti A., On a theorem of Torelli, Amer. J. Math., 1958, 80(4): 801-828.

[2] Arbarello E., Cornalba M., Teichmüller space via Kuranishi families, Ann. Sc. Norm. Super. Pisa Cl. Sci., 2009, 8(5): 89-116.

[3] Arbarello E., Cornalba M., Griffiths P., Geometry of Algebraic Curves, Vol. II, with a Contribution by Joseph Daniel Harris, Grundlehren der Mathematischen Wissenschaften, Spring-Verlag, Berlin, Vol. 268, 2011.

[4] Arbarello E., Cornalba M., Griffiths P., et al., Geometry of Algebraic Curves, Vol. I, Grundlehren der Mathematischen Wissenschaften, Spring-Verlag, New York, 1985.

[5] Berndtsson B., Strict and non strict positivity of direct image bundles, Math. Z., 2010, 269(3-4): 1201-1218.

[6] Carlson J., Green M., Griffiths P., et al., Infinitesimal variations of Hodge structure I, Compositio Math., 1983, 50(2-3): 109-205.

[7] Farkas H., Kra I., Riemann Surfaces, Graduate text in Mathematics 71, Spring-Verlag, New York, 1991.

[8] Griffiths P., Topics in Transcendental Algebraic Geometry, Annals of Mathematics Studies, Princeton Press, Princeton, New Jersy, Num. 106, 1984.

[9] Griffiths P., Harris J., Principles of Algebraic Geometry, Wiley Interscience Publication, New York, 1994.

[10] Guan F., Liu K., Todorov A., A global Torelli Theorem for Calabi-Yau manifolds, arXiv: 1112.1163. math.AG.

[11] Hain R., The rational cohomology ring of the moduli space of abelian 3-folds, Math. Res. Letter., 2002, 9(4): 473-491.

[12] Hain R., Looijenga E., Mapping class groups and moduli spaces of curves, Algebraic Geometry-Santa Cruz, 1995: 97-142, Proc. Sympos. Pure Math., 62, Part 2, Amer. Math. Soc., Providence, RI, 1997.

[13] Karpishpan Y., On the higher-order differentials of the period map. Duke Math. J., 1993, 72(3): 541-571.

[14] Kodaira K., Akao K., Complex Manifolds and Deformation of Complex Structures, Grundlehren der Mathematischen Wissenschaften, Spring-Verlag, New York, Vol, 283, 1986.

[15] Liu K., Rao S., Yang X., Quasi-isometry and deformations of Calabi-Yau manifolds, Invent. Math., 2015, 199(2): 423-453.

[16] Liu K., Sun X., Yau S. T., Recent Development on the Geometry of the Teichmüller and Moduli Spaces of Riemann Surfaces, Surveys in Differential Geometry, Vol. XIV. Geometry of Riemann Surfaces and Their Moduli Spaces, International Press, Somerville, Massachusetts, 221-259.

[17] Morrow J., Kodaira K., Complex Manifolds, American Mathematical Society Publishing, New York: Holt, Rinehart and Winston, 1971.

[18] Nag S., The Complex Analytic Theory of Teichmüller Space, Wiley Interscience Publication, New York, 1988.

[19] Oort F., Steenbrink J., The local Torelli Problem for Algebraic Curves, In book: Journèes de Géometrie Algèbrique d'Angers, Juillet 1979/Algebraic Geometry, Angers, Publisher: Sijthoff & Noordhoff, 1979: 157-204.

[20] Rao S., Zhao Q., Applications of deformation formula of holomorphic one-forms, Pacific J. Math., 2013, 266(1): 221-255.

[21] Shimizu Y., Ueno K., Advanced in Moduli Theory, Trans. Math. Monographs, Vol. 206, AMS.

[22] Wolpert S., Chern forms and Riemann tensor for the moduli space of curves, Invention Math., 1986, 85: 119-145.

[23] Wolpert S., The hyperbolic metric and the geometry of universal curve, J. Diff. Geom., 1990, 31(2): 417-472.

[24] Torelli R., Sulle Varieta' di Jacobi I, II, Rendiconti R. Accad. ei Lincei, 1913, 22-2: 98-103, 437-441.

[25] Weil A., Zum Beweis des Torellischen Satz, Nachrichten der Akademie der Wissenschaften Göttingen, Math. -Phys. Klasse, 1957, 2: 33-53 (German).

[26] Yin F., Geometry of the Period map of Riemann Surface, Ph.D Thesis, Zhejiang University, Hangzhou, 2010.

基金

国家自然科学基金资助项目(11301477)

PDF(664 KB)

404

Accesses

0

Citation

Detail

段落导航
相关文章

/