双重导子是导子的一种推广形式.令δ和ε为复线性代数A到自身内的两个映射, 称A到自身内的线性映射d是一个(δ, ε)-双重导子, 如果对任意a, b ∈ A, 有d(ab) = d(a)b+ad(b)+δ(a)ε(b)+ε(a)δ(b)成立.本文研究Banach代数上双重导子的自动连续性问题, 证明如果δ和ε为含单位元C*-代数上的两个在0点连续的映射, 则该C*-代数上的每个(δ, ε)-双重导子都是自动连续的.
Abstract
The double derivations are the generalized forms of ordinary derivations. For two mappings δ and ε from a complex linear algebra A into itself, a linear mapping d from A into itself is called a (δ, ε)-double derivation, if d(ab) = d(a)b+ad(b)+δ(a)ε(b)+ ε(a)δ(b) for all a, b ∈ A. We studies the problem on the automatic continuity of double derivations of Banach algebras. We prove that, if δ and ε are two continuous at zero mappings from a unital C*-algebra A into itself, then every (δ, ε)-double derivation of A is automatically continuous.
关键词
(&delta /
/
&epsilon /
-双重导子 /
自动连续性 /
Banach代数 /
C*-代数 /
*-映射
{{custom_keyword}} /
Key words
(δ, ε-double derivation /
automatic continuity /
Banach algebra /
C*-algebra /
*-mapping
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Dales H. G., Banach Algebras and Automatic Continuity, Clarendon Press, Oxford, 2000.
[2] Johnson B. E., Sinclair A. M., Continuity of derivations and a problem of Kaplansky, Amer. J. Math., 1968, 90(4): 1067-1073.
[3] Hou C., Meng Q., Continuity of (α, β)-derivations of operator algebras, J. Korean. Math. Soc., 2011, 48(4): 23-35.
[4] Kadison R. V., Ringrose J. R., Fundamentals of the Theory of Operators, Vol 1: Elementary Theory; Vol 2: Advanced Theory, American Mathematical Society, 1997.
[5] Kaplansky I., Some Aspects of Analysis and Probability, John Wiley & Sons, New York, 1958.
[6] Mirzavaziri M., Moslehlan M. S., Automatic continuity of δ-derivations on C*-algebras, Proc. Amer. Math. Soc., 2006, 134(11): 3319-3327.
[7] Mirzavaziri M., Tehrani E. O., δ-double derivations on C*-algebras, Iranian. Math. Soc., 2009, 35(1): 147- 154.
[8] Murphy J. G., Operator Theory and C*-algebras, Academic Press, Inc., Boston, MA, 1990.
[9] Ringrose J. R., Automatic continuity of derivations of operator algebras, J. London. Math. Soc., 1972, 5(2): 432-438.
[10] Sakai S., On a conjecture of Kaplansky, Thoku. Math. J., 1960, 12(2): 31-33.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金资助项目(11271224,11371222)
{{custom_fund}}