套代数上的高阶全可导点

刘磊

数学学报 ›› 2015, Vol. 58 ›› Issue (5) : 861-870.

PDF(413 KB)
PDF(413 KB)
数学学报 ›› 2015, Vol. 58 ›› Issue (5) : 861-870. DOI: 10.12386/A2015sxxb0086
论文

套代数上的高阶全可导点

    刘磊1,2
作者信息 +

Higher All-Derivable Points in Nest Algebras

    Lei LIU1,2
Author information +
文章历史 +

摘要

N 是Hilbert空间H 上的非平凡完备套.若线性映射φ = {φ(n)}n∈N满足对任意n ∈ N以及S, T ∈ algN, 且ST = G, φ(n)(ST) = ∑i+j = nφ(i)(S)φj)(T), 则称φ为algN上的G点高阶可导映射.若G点高阶可导映射φ = {φ(n)}n∈N为高阶导子, 则称G为algN上的高阶全可导点. 本文证明了, G ∈ algN为高阶全可导点当且仅当G ≠ 0.

Abstract

Let N be a nontrivial complete nest on a Hilbert space H. We say that φ = {φ(n)}n∈N is a higher derivable linear mapping at G if φ(n)(ST) = ∑#em/em#+j=nφ(i)(S)φj(T) for all n ∈ N and S, T ∈ algN with ST = G. An element G ∈ algN is called a higher all-derivable point of algN if every higher derivable linear mapping φ = {φ(n)}n∈N at G is a higher derivation. In this paper, we show G ∈ algN is a higher all-derivable point if and only if G ≠ 0.

关键词

套代数 / 高阶导子 / 全可导点

Key words

nest algebras / higher derivations / all-derivable points

引用本文

导出引用
刘磊. 套代数上的高阶全可导点. 数学学报, 2015, 58(5): 861-870 https://doi.org/10.12386/A2015sxxb0086
Lei LIU. Higher All-Derivable Points in Nest Algebras. Acta Mathematica Sinica, Chinese Series, 2015, 58(5): 861-870 https://doi.org/10.12386/A2015sxxb0086

参考文献

[1] Alaminos J., Extremera J., Villena A. R., Characterizing homomorphisms and derivations on C*-algebras, Proc. Roy. Soc. Edinburgh Sect. A, 2007, 137: 1-7.

[2] Crist R. L., Local derivations on operator algebras, J. Funct. Anal., 1996, 135: 76-92.

[3] Davidson K. R., Nest Algebras, Pitman Research Notes in Mathematics Series, Vol. 191, Longman Scientific and Technical, 1988.

[4] Ferrero M., Haetinger C., Higher derivations and a theorem by Herstein, Quaest. Math., 2002, 25: 249-257.

[5] Ferrer M., Haetinger C., Higher derivations of semiprime rings, Comm. Algebra, 2002, 30: 2321-2333.

[6] Han D. G., Wei S. Y., Local derivations of nest algebras, Proc. Amer. Math. Soc., 1995, 123: 3095-3100.

[7] Hou J. C., Qi X. F., Additive maps derivable at some points on J-subspace lattice algebras, Linear Algebra Appl., 2008, 429: 1851-1863.

[8] Johnson B. E., Local derivations on C*-algebras are derivations, Trans. Amer. Math. Soc., 2001, 353: 313- 325.

[9] Kadison R. V., Local derivations, J. Algebra, 1990, 130: 494-509.

[10] Larson D. R., Sourour A. R., Local derivations and local automorphisms of B(X), Proc. Sym. Pure Math., 1990, 51: 187-194.

[11] Qi X. F., Hou J. C., Characterizations of derivations of Banach space nest algebras: All-derivable points, Linear Algebra Appl., 2010, 432: 3183-3200.

[12] Ribenboim P., Higher derivations of rings, I, Rev. Roumaine Math. Pures Appl., 1971, 16: 77-110.

[13] Ribenboim P., Higher derivations of rings, II, Rev. Roumaine Math. Pures Appl., 1971, 16: 245-272.

[14] Wei F., Xiao Z. K., Higher derivations of triangular algebras and its generalizations, Linear Algebra Appl., 2011, 435: 1034-1054.

[15] Xiao Z. K., Wei F., Jordan higher derivations on some operator algebras, Houston J. Math., 2012, 38: 275-293.

[16] Zhang J. H., Ji G. X., Cao H. X., Local derivations of nest subalgebras of von Neumann algebras, Linear Algebra Appl., 2004, 392: 61-69.

[17] Zhu J., Xiong C. P., All-derivable points in continuous nest algebras, J. Math. Anal. Appl., 2008, 340: 845-853.

[18] Zhu J., Zhao S., Characterization of all-derivable points in nest algebras, Proc. Amer. Math. Soc., 2013, 141: 2343-2350.

基金

国家自然科学基金资助项目(11326109,11401452);中央高校基本科研业务费资助项目(JB140707)

PDF(413 KB)

Accesses

Citation

Detail

段落导航
相关文章

/