一类分裂变分不等式及其收敛算法

黄志霞, 黄建华

数学学报 ›› 2015, Vol. 58 ›› Issue (6) : 1035-1044.

PDF(349 KB)
PDF(349 KB)
数学学报 ›› 2015, Vol. 58 ›› Issue (6) : 1035-1044. DOI: 10.12386/A2015sxxb0102
论文

一类分裂变分不等式及其收敛算法

    黄志霞, 黄建华
作者信息 +

A Split Variational Inequality Problem and Its Convergence Algorithm

    Zhi Xia HUANG, Jian Hua HUANG
Author information +
文章历史 +

摘要

引入一种新的分裂变分不等式问题,构造了两种算法来求解,得到了相应迭代序列的弱收敛性和强收敛性.

Abstract

We introduce a new split variational inequality problem and construct two algorithms for solving the problems. The weak and strong convergence of the sequences defined by two general algorithms is respectively obtained.

关键词

分裂变分不等式问题 / 非扩张 / 弱收敛 / 强收敛

Key words

split variational inequality problem / nonexpansive / weak convergence / strong convergence

引用本文

导出引用
黄志霞, 黄建华. 一类分裂变分不等式及其收敛算法. 数学学报, 2015, 58(6): 1035-1044 https://doi.org/10.12386/A2015sxxb0102
Zhi Xia HUANG, Jian Hua HUANG. A Split Variational Inequality Problem and Its Convergence Algorithm. Acta Mathematica Sinica, Chinese Series, 2015, 58(6): 1035-1044 https://doi.org/10.12386/A2015sxxb0102

参考文献

[1] Browder F. E., Fixed point theorems for noncompact mappings in Hilbert space, Proc. Natl. Acad. Sci. USA, 1965, 53: 1272–1276.

[2] Censor Y., Gibali A., Reich S., Algorithms for the split variational inequality problem, Numer. Algor., 2012, 59: 301–323.

[3] Crombez G., A hierarchical presentation of operators with fixed points on Hilbert spaces, Numer. Funct. Anal. Optim., 2006, 27: 259–277.

[4] Geobel K., Kirk W. A., Topics on Metric Fixed-Point Theory, Cambridge Studies in Advanced Mathematics, Vol. 28, Cambridge University Press, Cambridge, 1990.

[5] Marino G., Xu H. K., A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 2006, 318: 43–52.

[6] Schu J., Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, J. Math. Anal. Appl., 1991, 43: 153–159.

[7] Suzuki T., Strong convergence of Krasnoselkii and Mann's type sequences for one-parameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl., 2005, 305: 227–239.

[8] Wang S. H., Marino G., Liou Y. C., Strong convergence theorems for variational inequality, equilibrium and fixed point problems with applications, J. Glob. Optim., 2012, 54: 155–171.

[9] Xu H. K., Iterative algorithms for nonlinear operators, J. Lond. Math. Soc., 2002, 66: 240–256.

[10] Yu X., Shahzad N., Yao Y. H., Implicit and explicit algorithms for solving the split feasibility problem, Optim. Lett., 2012, 6: 1447–1462.
PDF(349 KB)

Accesses

Citation

Detail

段落导航
相关文章

/