非交换加权Lorentz空间的对偶空间
The Dual of Noncommutative Weighted Lorentz Spaces
设 M 是一个半有限von Neumann代数. 对于< p < ∞, 0 < q ≤ ∞, 定义了非交换加权 Lorentz 空间Λωp,q (M) 及其 associate 空间Λωp,q(M)', 给出了空间Λωp,q(M) 和 Λωp,q(M)' 的一些基本性质.应用这些性质,还给出了非交换加权 Lorentz 空间Λωp,q(M), 0< p< ∞ 的对偶空间.
Let M be a semifinite von Neumann algebra. For 0 < p < ∞, 0 < q ≤ ∞, we define the noncommutative weighted Lorentz spaces Λωp,q (M) and its associate spaces Λωp,q (M)'. Subsequently, we give some properties of the spaces Λωp,q(M) and Λωp,q(M)'. As an application, the dual spaces of Λωp,q(M) is presented for 0 < p < ∞.
von Neumann 代数 / 非交换加权 Lorentz 空间 / 对偶空间 {{custom_keyword}} /
von Neumann algebras / noncommutative weighted Lorentz spaces / dual spaces {{custom_keyword}} /
[1] Bennett C., Sharpley R., Interpolation of Operator, Academic Press, London, 1988.
[2] Carro M. J., Raposo J. A., Soria J., Recent developments in the theory of Lorentz spaces and weighted inequalities, Memoir Am. Math. Soc., 2007.
[3] Dodds P. G., Dodds T. K., de Pagter B., Non-commutative Banach function spaces, Math. Z., 1989, 201: 583-597.
[4] Dodds P. G., Dodds T. K., de Pagter B., Noncommutative Köthe duality, Trans. Amer. Math. Soc., 1993, 339: 717-750.
[5] Fack T., Kosaki H., Generalized s-numbers of τ-measurable operators, Prac. J. Math., 1986, 123: 269-300.
[6] Guido D., Isola T., Singular traces on semifinite von Neumann algebras, J. Funct. Anal., 1995, 134: 451-485.
[7] Pisier G., Xu Q., Noncommutative Lp-spaces, Handbook of the geometry of Banach spaces, vol 2, North Holland, London, 2003: 1459-1517.
[8] Terp M., Lp Spaces Associated with von Neumann Algebras, Notes, Copenhagen Univ., Copenhagen, 1981.
[9] Watanabe K., Some results on non-commutative Banach function spaces II, Hok. Math. J., 1993, 22: 349- 364.
[10] Yeadon E. J., Non-commutative Lp-spaces, Math. Proc. Camb. Philos. Soc., 1975, 77: 91-102.
国家自然科学基金资助项目(11371304, 11401507)
/
〈 | 〉 |