具有无界变差的连续函数研究进展

梁永顺

数学学报 ›› 2016, Vol. 59 ›› Issue (2) : 215-232.

PDF(630 KB)
PDF(630 KB)
数学学报 ›› 2016, Vol. 59 ›› Issue (2) : 215-232. DOI: 10.12386/A2016sxxb0020
论文

具有无界变差的连续函数研究进展

    梁永顺
作者信息 +

Some Remarks on Continuous Functions of Unbounded Variation

    Yong Shun LIANG
Author information +
文章历史 +

摘要

讨论了具有无界变差的连续函数的结构.首先按照局部结构和分形维数对连续函数进行了分类, 给出了相应的例子.对这些具有无界变差的函数的性质进行了初步的讨论.对于新定义的奇异连续函数, 给出了一个等价判别定理.基于奇异连续函数, 又给出了局部分形函数和分形函数的定义.同时,分形函数又由奇异分形函数、非正则分形函数和正则分形函数组成.相应于不连续函数的情形也进行了简单的讨论.

Abstract

Different type of continuous functions of unbounded variation have been discussed. According to the local structure, all continuous functions have been classified. Meanwhile, certain examples of different kinds of fractal functions have been given. Properties of those fractal functions have also been discussed. Definition of singular continuous functions has been given and an equivalent theorem which can be used to describe whether a function is a singular continuous function or not has been set up. Based on definition of singular continuous functions, we make research on definition of local fractal functions and fractal functions. Fractal functions are composed of singular fractal functions, irregular fractal functions and regular fractal functions. Finally, definition of fractal functions corresponding to discontinuous functions has been explored.

关键词

Hausdorff维数 / Box维数 / 变差 / 分数阶微积分 / 分形函数

Key words

Hausdorff dimension / Box dimension / variation / fractional calculus / fractal functions

引用本文

导出引用
梁永顺. 具有无界变差的连续函数研究进展. 数学学报, 2016, 59(2): 215-232 https://doi.org/10.12386/A2016sxxb0020
Yong Shun LIANG. Some Remarks on Continuous Functions of Unbounded Variation. Acta Mathematica Sinica, Chinese Series, 2016, 59(2): 215-232 https://doi.org/10.12386/A2016sxxb0020

参考文献

[1] Bedford T. J., The box dimension of self-affine graphs and repellers, Nonlinearity, 1989, 2: 53-71.
[2] Besicovitch A. S., Ursell H. D., Sets of fractional dimensions, V: On dimensional numbers of some continuous curves, J. London Math. Soc., 1937, 12: 18-25.
[3] Deliu A., Wingren P., The Takagi operator, Bernoulli sequences, smoothness condition and fractal curves, Proc. Amer. Math. Soc., 1994, 121: 893-895.
[4] Falconer J., Fractal Geometry: Mathematical Foundations and Applications, John Wiley Sons Inc., New York, 1990.
[5] Hu T. Y., Lau K. S., The sum of Radamacher functions and Hausdorff dimension, Math. Proc. Cambridge Philos. Soc., 1990, 108: 91-103.
[6] Liang Y. S., Su W. Y., The relationship between the fractal dimensions of a type of fractal functions and the order of their fractional calculus, Chaos Solitons Fractals, 2007, 34: 682-692.
[7] Liang Y. S., Connection between the order of fractional calculus and fractional dimensions of a type of fractal functions, Ana. Theory Appl., 2007, 23: 354-363.
[8] Liang Y. S., The relationship between the Box dimension of the Besicovitch functions and the orders of their fractional calculus, Appl. Math. Comput., 2008, 200: 197-207.
[9] Liang Y. S., On the fractional calculus of Besicovitch function, Chaos Solitons Fractals, 2009, 42: 2741-2747.
[10] Liang Y. S., Box dimensions of Riemann-Liouville fractional integrals of continuous functions of bounded variation, Nonlinear Anal., 2010, 72: 4304-4306.
[11] Liang Y. S., Su W. Y., Von Koch curve and its fractional calculus, Acta Mathematica Sinica, Chinese Series, 2011, 54: 227-240.
[12] Liang Y. S., Upper bound estimation of fractal dimensions of fractional integral of continuous functions, Advances in Pure Mathematics, 2015, 5: 27-30.
[13] Mauldin R. D., Williams S. C., On the Hausdorff dimension of some graphs, Trans. Amer. Math. Soc., 1986, 295: 325-346.
[14] Oldham K. B., Spanier J., The Fractional Calculus, Academic Press, New York, 1974.
[15] Ross B., The Fractional Calculus and Its Applications, Springer-Verlag, Berlin, Heidelberg, 1975.
[16] Ruan H. J., Su W. Y., Yao K., Box dimension and fractional integral of linear fractal interpolation functions, J. Approx. Theory, 2009, 161: 187-197.
[17] Solomyak B., On the random series Σ±λn, Annals of Math., 1995, 142: 611-625.
[18] Tatom F. B., The relationship between fractional calculus and fractals, Fractals, 1995, 3: 217-229.
[19] Tricot C., Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc., 1982, 91: 54-74.
[20] Wen Z. Y., Mathematical Foundations of Fractal Geometry, Shanghai Science and Technology Educational Publishing House, Shanghai, 2000 (in Chinese).
[21] Xie T. F., Zhou S. P., On a class of singular continuous functionss with graph Hausdorff dimension 2, Chaos Solitons Fractals, 2007, 32: 1625-1630.
[22] Yao K., Su W. Y., Zhou S. P., On the fractional calculus of a type of Weierstrass function, Chinese Annals Math., 2004, 25(A): 711-716.
[23] Yao K., Su W. Y., Zhou S. P., On the connection between the order of the fractional calculus and the dimension of a fractal function, Chaos Solitons Fractals, 2005, 23: 621-629.
[24] Yao K., Su W. Y., Zhou S. P., On the fractional derivatives of a fractal function, Acta Mathematica Sinica, Engl. Series, 2006, 22: 719-722.
[25] Yao K., Liang Y. S., Dimension of graphs of fractional derivatives of self-affine curves, Acta Mathematica Sinica, Chines Series, 2013, 56: 693-698.
[26] Zahle M., Ziezold H., Fractional derivatives of Weierstrass-type functions, J. Comput. Appl. Math., 1996, 76: 265-275.
[27] Zahle M., Fractional differentiation in the self-affine case V-the local degree of differentiability, Math. Nach., 1997, 185: 297-306.
[28] Zhang Q., Liang Y. S., The Weyl-Marchaud fractional derivative of a type of self-affine functions, Appl. Math. Comput., 2012, 218: 8695-8701.
[29] Zhang Q., Some remarks on one-dimensional functions and their Riemann-Liouville fractional calculus, Acta Mathematica Sinica, English Series, 2014, 30: 517-524.
[30] Zheng W. X., Wang S. W., Real Function and Functional Analysis, High Education Publication, Beijing, 1980 (in Chinese).

基金

国家自然科学基金资助项目(11201230, 11271182);江苏省自然科学基金资助项目(BK2012398)

PDF(630 KB)

271

Accesses

0

Citation

Detail

段落导航
相关文章

/