
多复变Fekete-Szegö问题
On the Fekete-Szegö Problem in Several Complex Variables
令F为单位圆盘上正规化单叶函数族.Fekete和Szegö,证明了如下的著名结果:对λ∈[0,1],成立maxf∈F|a3-λa22|=1+2e-2λ/1-λ.本文研究了Cn中有界星形圆形域上的星形映照的相应问题.定理的证明有假设条件,但该条件在单复变情形下是自动满足的.
Let F be the familiar class of normalized univalent functions in the unit disk.Fekete and Szegö proved the well-known result maxf∈F|a3-λa22|=1+2e-2λ/1-λ for λ∈[0,1].We investigate the corresponding problem for the class of starlike mappings defined on the bounded starlike circular domain in Cn.The proofs of these results use some restrictive assumptions,which in the case of one complex variable are automatically satisfied.
Fekete-Szegö / 问题 / 星形映照 / 有界星形圆形域 {{custom_keyword}} /
Fekete-Szegö / problem / starlike mappings / bounded starlike circular domain {{custom_keyword}} /
[1] Bieberbach L., Über die Koeffizienten der einigen Potenzreihen welche eine schlichte Abbildung des Einheit-skreises vermitten, S. B. Preuss. Akad. Wiss., 1916.
[2] Bhowmik B., Ponnusamy S., Wirths K. J., On the Fekete-Szegö problem for concave univalent functions, J. Math. Anal. Appl., 2011, 373:432-438.
[3] Cartan H., Sur la Possibilité D'étendre aux Fonctions de Plusieurs Variables Complexes la Théorie des Fonctions Univalentes, in:P. Montel (Ed.), Lecons sur les Fonctions Univalentes ou Multivalentes, GauthierVillars, Paris, 1933.
[4] de-Branges L., A proof of the Bieberbach conjecture, Acta Math., 1985, 154(1-2):137-152.
[5] Fekete M., Szegö G., Eine Bemerkunguber ungerade schlichte Funktionen, J. Lond. Math. Soc., 1933, 8:85-89.
[6] Gong S., The Bieberbach Conjecture, Amer, Math. Soc., International Press, Providence, RI, 1999.
[7] Graham I., Hamada H., Kohr G., Parametric representation of univalent mappings in several complex variables, Canadian J. Math., 2002, 54:324-351.
[8] Graham I., Kohr G., Kohr M., Loewner chains and parametric representation in several complex variables, J. Math. Anal. Appl., 2003, 281:425-438.
[9] Graham I., Kohr G., Geometric Function Theory in One and Higher Dimensions, Marcel Dekker, New York, 2003.
[10] Graham I., Hamada H., Honda T., et al., Growth, distortion and coefficient bounds for Carathéodory families in Cn and complex Banach spaces, J. Math. Anal. Appl., 2014, 416:449-469.
[11] Graham I., Hamada H., Kohr G., et al., Univalent Subordination Chains in Reflexive Complex Banach Spaces, Complex Analysis and Dynamical Systems V, 83-111, Contemp. Math., 591, Amer. Math. Soc., Providence, RI, 2013.
[12] Hamada H., Honda T., Kohr G., Growth theorems and coefficient bounds for univalent holomorphic mappings which have parametric representation, J. Math. Anal. Appl., 2006, 317:302-319.
[13] Hamada H., Honda T., Sharp growth theorems and coefficient bounds for starlike mappings in several complex variables, Chin. Ann. Math., 2008, 29B(4):353-368.
[14] Kanas S., An unified approach to the Fekete-Szegö problem, Appl. Math. Comput., 2012, 218:8453-8461.
[15] Koepf W., On the Fekete-Szegö problem for close-to-convex functions, Proc. Amer. Math. Soc., 1987, 101:89-95.
[16] Kohr G., On some best bounds for coefficients of several subclasses of biholomorphic mappings in Cn, Complex Variables, 1998, 36:261-284.
[17] London R. R., Fekete-Szegö inequalities for close-to-convex functions, Proc. Amer. Math. Soc., 1993, 117(4):947-950.
[18] Liu T. S., Ren G B., The growth theorem for starlike mappings on bounded starlike circular domains, Chin Ann of Math., 1998, 19B:401-408.
[19] Liu X S., Liu T. S., On the sharp growth, covering theorems for normalized biholomorphic mappings in Cn, Acta Math. Scientia, 2007, 27B(4):803-812.
[20] Liu X S., Liu T. S., The sharp estimates of all homogeneous expansions for a class of quasi-convex mappings on the unit polydisk in Cn, Chin. Ann. Math., 2011, 32B:241-252.
[21] Pfluger A., The Fekete-Szegö inequality for complex parameter, Complex Var. Theory Appl., 1986, 7:149-160.
[22] Suffridge T. J., Starlike and convex maps in Banach spaces, Pacif. J. Math., 1973, 46:575-589.
[23] Xu Q. H., Liu T. S., On coefficient estimates for a class of holomorphic mappings, Sci. China Ser. A, 2009, 52:677-686.
[24] Xu Q. H., Liu T. S., Biholomorphic mappings on bounded starlike circular domain, J. Math. Anal. Appl., 2010, 366:153-163.
[25] Xu Q. H., Liu T. S., On the Fekete and Szegö problem for the class of starlike mappings in several complex variables, Abstr. Appl. Anal., 2014, ID807026, 6pp.
国家自然科学基金资助项目(11261022, 11471111);江西省自然科学重大基金(20152ACB2002)
/
〈 |
|
〉 |