两项指数和及两项特征和的混合均值

杜晓英

数学学报 ›› 2016, Vol. 59 ›› Issue (3) : 309-316.

PDF(371 KB)
PDF(371 KB)
数学学报 ›› 2016, Vol. 59 ›› Issue (3) : 309-316. DOI: 10.12386/A2016sxxb0029
论文

两项指数和及两项特征和的混合均值

    杜晓英
作者信息 +

The Hybrid Power Mean of Two-Term Exponential Sums and Character Sums

    Xiao Ying DU
Author information +
文章历史 +

摘要

利用解析方法以及高斯和的性质研究一类二项指数和及二项特征和的混合均值问题,并给出一个精确的表示式.作为应用,给出该和式的一个渐近公式以及该和式与Dirichlet L-函数加权均值的一个较强的渐近公式.

Abstract

The main purpose of this paper is using the analytic methods and the properties of Gauss sums to study the computational problem of one kind hybrid power mean of two-term exponential sums and two-term character sums,and give an exact expression for it.As its applications,we obtained an asymptotic formula for the hybrid power mean and a sharp asymptotic formula for the mean value of Dirichlet L-functions weighted by the two-term exponential sums and two-term character sums.

关键词

二项指数和 / 二项特征和 / 混合均值 / 渐近公式 / 解析方法

Key words

two-term exponential sums / two-term character sums / hybrid power mean / asymptotic formula / analytic method

引用本文

导出引用
杜晓英. 两项指数和及两项特征和的混合均值. 数学学报, 2016, 59(3): 309-316 https://doi.org/10.12386/A2016sxxb0029
Xiao Ying DU. The Hybrid Power Mean of Two-Term Exponential Sums and Character Sums. Acta Mathematica Sinica, Chinese Series, 2016, 59(3): 309-316 https://doi.org/10.12386/A2016sxxb0029

参考文献

[1] Apostol Tom M., Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
[2] Burgess D. A., On character sums and primitive roots, Proc. London Math. Soc., 1962, 12:179-192.
[3] Burgess D. A., On Dirichlet characters of polynomials, Proc. London Math. Soc., 1963, 13:537-548.
[4] Cochrane T., Zheng Z., Bounds for certain exponential sums, Asian J. Math., 2000, 4:757-774.
[5] Duke W., Iwaniec H., A relation between cubic exponential and Kloosterman sums, Contemp. Math., 1993, 143:255-258.
[6] Granville A., Soundararajan K., Large character sums:Pretentious characters and the Pólya-Vinogradov theorem, J. Amer. Math. Soc., 2007, 20:357-384.
[7] Weil A., On some exponential sums, Proc. Nat. Acad. Sci. U.S.A., 1948, 34:204-207.
[8] Zhang W. P., On the mean values of Dedekind Sums, J. Théor. Nombres Bordeaux, 1996, 8:429-442.
[9] Zhang W. P., Han D., On the sixth power mean of the two-term exponential sums, J. Number Theory, 2014, 136:403-413.
[10] Zhang W. P., Wang T. T., On the Dirichlet characters of polynomials, Mathe. Slovaca, 2014, 64:301-310.
[11] Zhang W. P., Yao W. L., A note on the Dirichlet characters of polynomials, Acta Arith., 2004, 115:225-229.
[12] Zhang W. P., Yi Y., On Dirichlet characters of polynomials, Bull. London Math. Soc., 2002, 34:469-473.
[13] Zhang W. P., Yi Y., He X. L., On the 2k-th power mean of Dirichlet L-functions with the weight of general Kloosterman sums, J. Number Theory, 2000, 84:199-213.
[14] Zhu M. H., Han D., On the fourth power mean of the two-term exponential sums, J. Inequalities App., 2014, 116:7.

基金

国家自然科学基金资助项目(11371291);陕西省自然科学基金资助项目(2014JM1009)

PDF(371 KB)

Accesses

Citation

Detail

段落导航
相关文章

/