
理想收敛的若干研究及推广
Some Discussions and Generalizations of Ideal Convergence
在Banach空间X中利用序列的I-收敛与I*-收敛给出理想I具可加性质(AP)的等价刻画,并进一步研究弱I-收敛、弱I*-收敛、一致弱I*-收敛之间,以及弱I-收敛与收敛之间的关系,最后基于I-λ-统计收敛给出其推广:I-A-统计收敛,并以次微分映射为工具定义一族有限可加测度,用于等价刻画I-A-统计收敛,这亦是有限可加测度的一个应用体现.
Applying I-convergence and I*-convergence of sequences in Banach space X,this paper first present a sufficient and neccessary condition for an ideal I has the additive property,then establish the relation between w-I-convergence,w-I*-convergnence and uni-w-I*-convergence,also the connection between w-I-convergence and convergence,finally we define I-A-statistical convergence which is the generalization of I-λ-statistical convergence,and by using subdifferential mapping to define a set of finite additive measures,we show the equivalent description of I-A-statistical convergence,this is an application of finite additive measures.
I-收敛 / I*-收敛 / I-A-统计收敛 {{custom_keyword}} /
I-convergence / I*-convergence / I-A-statistical convergence {{custom_keyword}} /
[1] Cheng L. X., Lin G. C., Lan Y. Y., et al., Measure theory of statistical convergence, Science China Series A, 2008, 51(12):2285-2303.
[2] Cheng L. X., Lin G. C., Shi H. H., On real-valued measures of statistical type and their applications to statistical convergence, Math. Computer Modelling, 2009, 50(1-2):116-122.
[3] Fast H., Sur le convergence statistical, Colloq. Math., 1951, 2:241-244.
[4] Kostyrko P., ŠalátT., Wilczyński W., I-convergence, Real Anal. Exchange, 2000-2001, 26:669-689.
[5] Phelps R. R., Convex Functions, Monotone Operators and Differentiability, Lect. Notes in Math., SpringerVerlag, Vol.1364, 1989.
[6] Steinhaus H., Sur le convergence ordinaire et la convergence asymptotique, Colloq. Math., 1951, 2:73-74.
[7] Savas E., Das P., A generalized statistical convergence via ideals, Appl. Math. Letters, 2011, 24(6):826-830.
[8] Zhou X. G., Zhang M., A representation theorem for two types of statistical convergence, Acta Mathematica Sinica, Chinese Series, 2010, 53(2):251-256.
国家自然科学基金(11226129, 11201160, 11401227); 福建省自然科学基金(2012J05006)资助项目
/
〈 |
|
〉 |