
正压缩算子Jordan积的最大最小谱点
Minimum and Maximum Spectrum Points of Jordan Products of Positive Contractions
主要讨论了正压缩算子Jordan积的谱,刻画了正压缩算子Jordan积的最大最小谱点以及正交投影Jordan积的谱.
In this note,the spectrum of Jordan products of positive contractions are discussed.We shall establish characterizations of the minimum and maximum spectrum points of Jordan products of positive contractions.And a characterization of minimum spectral points of Jordan products of orthogonal projections is given.
正算子 / Jordan积 / 数值域 / 谱 / 正交投影 {{custom_keyword}} /
positive operator / Jordan product / numerical range / spectrum / orthogonal projection {{custom_keyword}} /
[1] Du H. K., Deng C. Y., Common complements of two subspaces and an answer of Groß's question, Acta Mathematica Sinica, Chinese Series, 2006, 49:1109-1112.
[2] Du H. K., Yao X. Y., Deng C. Y., Invertibility of linear combinations of two idempotents, Proc. Amer. Math. Soc., 2005, 134:1451-1457.
[3] Klaja H., The numerical range and the spectrum of a product of two orthogonal projections, J. Math. Anal. Appl., 2014, 411:177-195.
[4] Li C. K., Tsai M. C., Wang K. Z., et al., The spectrum of the product of operators, and the product of their numerical ranges, Linear Algebra Appl., 2015, 469:487-499.
[5] Martins E. A., Silva F. C., On the invariant polynomials of Jordan products, Linear Algebra Appl., 2003, 360:173-189.
[6] Martins E. A., Silva F. C., On the eigenvalues of Jordan products, Linear Algebra Appl., 2003, 359:249-262.
[7] Ogasawara T., A theorem on operator algebras, J. Sci. Hiroshima Univ. Ser. A, 1955, 18:307-309.
[8] Stampfli J. D., The norm of a derivation, Pacific J. Math., 1970, 33:737-747.
[9] Wang Y. Q., Du H. K., A characterization of maximum norms of commutators of positive contractions, J. Math. Anal. Appl., 2008, 348:990-995.
国家自然科学基金资助项目(11571211); 重庆科技学院博士教授基金(CK2010B09)
/
〈 |
|
〉 |