与自反的n-color有序分拆相关的一些恒等式
Some Identities Related to the Self-Inverse n-color Compositions
首先,给出了偶数2v的自反的n-color有序分拆与v+1, v-1的n-color有序分拆之间的一个组合双射,并利用相应的计数公式得到了一个组合恒等式.其次,给出了正整数自反的n-color有序分拆数与Fibonacci数、Lucas数之间的一个关系式,并利用此关系式给出了偶数与奇数的自反的n-color有序分拆之间的一个组合双射.最后,给出了一些涉及正整数v的自反的n-color有序分拆数与其它有约束条件的有序分拆数之间的分拆恒等式.
Firstly, we give a combinatorial bijection between the self-inverse n-color compositions of 2ν the n-color compositions of ν+1 along with the n-color compositions of ν-1 in this paper, and we also obtain a combinatorial identity by using some related enumeration formulas. Then, we give a relationship about the number of the self-inverse n-color compositions of positive integer, the Fibonacci number and the Lucas number. In addition, a combinatorial bijection between the self-inverse n-color compositions of odd and the self-inverse n-color compositions of even is presented. Finally, we get some identities about the number of the self-inverse n-color compositions of positive integer and the number of the others compositions with constraint conditions.
自反的n-color有序分拆 / 组合双射 / Fibonacco数 / Lucas数 / 恒等式 {{custom_keyword}} /
self-inverse n-color compositions / combinatorial bijection / Fibonacci number / Lucas number / identity {{custom_keyword}} /
[1] Agarwal A. K., Andrews G. E., Rogers-Ramanujan identities for partition with ‘N copies of N’, J. Combin. Theory A, 1987, 45(1): 40-49.
[2] Agarwal A. K., n-color compositions, Indian J. Pure Appl. Math., 2000, 31(11): 1421-1427.
[3] Agarwal A. K., An analogue of Euler's identity and new Combinatorial properties of n-color com-positions, J. Comput. Appl. Math., 2003, 160(1/2): 9-15.
[4] Guo Y. H., n-color even compositions, Ars. Combina., 2013, 109(2): 425-432.
[5] Guo Y. H., Some n-color compositions, J. Integer Sequence, 2012, Vol.15: Article 12.1.2.
[6] Guo Y. H., n-color even self-inverse compositions, Proc. Indian Acad. Sci. Math. Sci., 2010, 120(1): 27-33.
[7] Guo Y. H., n-color odd self-inverse compositions, J. Integer Sequence, 2014, Vol.17: Article 14.10.5.
[8] Guo Y. H., A relationship of n-colour self-inverse compositions (in Chinese), J. Wuhan Univ. Natural Science Edition, 2012, 58(5): 430-432.
[9] MacMahon P. A., Combinatory Analysis, AMS Chelsea Publishingvol I, Ⅱ, New York, 2001.
[10] Narang G., Agarwal A. K., Lattice paths and n-color compositions, Discrete Math., 2008, 308: 1732-1740.
[11] Narang G., Agarwal A. K., n-color self-inverse compositions, Proc. Indian Acad. Sci. Math. Sci., 2006, 116(3): 257-266.
[12] Shapcott C., New bijections from n-color compositions, J. Combinat., 2013, 4(3): 373-385.
国家自然科学基金资助项目(11461020)
/
〈 | 〉 |