幂次为2,3,4,5的素变量非线性型的整数部分

李伟平, 戈文旭, 王天泽

数学学报 ›› 2016, Vol. 59 ›› Issue (5) : 585-594.

PDF(395 KB)
PDF(395 KB)
数学学报 ›› 2016, Vol. 59 ›› Issue (5) : 585-594. DOI: 10.12386/A2016sxxb0054
论文

幂次为2,3,4,5的素变量非线性型的整数部分

    李伟平1, 戈文旭2, 王天泽2
作者信息 +

The Integer Part of Nonlinear Form with Mixed Powers 2, 3, 4, 5 and Prime Variables

    Wei Ping LI1, Wen Xu GE2, Tian Ze WANG2
Author information +
文章历史 +

摘要

考虑了一个混合幂次为2,3,4,5的素变量非线性型的整数部分表示无穷多素数的问题.运用Davenport-Heilbronn方法证明了:如果λ1,λ2,λ3,λ4是正实数,至少有一个λij(1≤i< j≤4)是无理数,那么存在无穷多素数p1p2p3p4p,使得[λ1p122p233p344p45]=p.

Abstract

The present paper considered one problem which integer part of nonlinear form with mixed powers 2, 3, 4, 5 and prime variables represents prime infinitely. Using Davenport-Heilbronn method, we show that if λ1234 are positive real numbers,at least one of the ratios λij (1≤i< j≤4) is irrational, then there exist infinitely many primes p1,p2,p3,p4,p such that[λ1p122p233p344p45]=p.

关键词

素数变量 / 丢番图逼近 / Davenport-Heilbronn方法

Key words

prime variables / diophantine approximation / Davenport-Heilbronn method

引用本文

导出引用
李伟平, 戈文旭, 王天泽. 幂次为2,3,4,5的素变量非线性型的整数部分. 数学学报, 2016, 59(5): 585-594 https://doi.org/10.12386/A2016sxxb0054
Wei Ping LI, Wen Xu GE, Tian Ze WANG. The Integer Part of Nonlinear Form with Mixed Powers 2, 3, 4, 5 and Prime Variables. Acta Mathematica Sinica, Chinese Series, 2016, 59(5): 585-594 https://doi.org/10.12386/A2016sxxb0054

参考文献

[1] Danicic I., On the integral part of a linear form with prime variables, Canadian J. Math., 1966, 18:621-628.
[2] Davenport H., Roth K. F., The solubility of certain diophantine inequalities, Mathematika, 1955, 2:81-96.
[3] Harman G., Trigonometric sums over primes I, Mathematika, 1981, 28:249-254.
[4] Li W. P., Su B. Y., The integral part of a nonlinear form with five cubes of primes, Lithuanian Mathematical J., 2013, 53:63-71.
[5] Li W. P., Wang T. Z., The integral part of a nonlinear form with three squares of primes (in Chinese), Chinese Annals of Math., 2011, 32(6):753-762.
[6] Li W. P., Wang T. Z., The integral part of nonlinear form with k powers of primes, Acta Mathematica Sinica, Chinese Series, 2013, 56(4):605-612.
[7] Vaughan R. C., Diophantine approximation by prime numbers, I, Proc. London Math. Soc., 1974, 28:373-384.
[8] Vaughan R. C., Diophantine approximation by prime numbers, Ⅱ, Proc. London Math. Soc., 1974, 28:385-401.
[9] Vaughan R. C., The Hardy-Littlewood Method, Second Edition, Cambridge Tracts in Mathematics, Vol. 125, Cambridge University Press, Cambridge, 1997.

基金

国家自然科学基金资助项目(11371122,11471112);2011河南省创新型科技人才队伍建设工程;2013年河南省科技创新杰出人才,河南省科技攻关项目(152102310320)

PDF(395 KB)

200

Accesses

0

Citation

Detail

段落导航
相关文章

/