
Cerami条件下脉冲边值问题古典解的存在性
Existence of Classical Solutions to Impulsive Boundary Value Problems under Cerami Condition
在非线性项不满足Ambrosetti-Rabinowitz条件时研究脉冲微分方程边值问题,在原来的变分结构下,利用Cerami条件下成立的临界点理论来研究脉冲微分方程边值问题古典解的存在性和多重性.
We consider the existence and multiplicity of solutions for a class of nonlinear impulsive problems when nonlinearity does not satisfy Ambrosetti-Rabinowitz condition. We obtain some new existence theorems of solutions by using critical theorems under Cerami condition.
Cerami条件 / 脉冲 / 古典解 {{custom_keyword}} /
Cerami condition / impulsive / classical solutions {{custom_keyword}} /
[1] Liu J., Zhao Z. Q., An application of variational methods to second order impulsive differential equation with derivative dependence, Electron. J. Differ. Equ., 2014, 2014(62):1-13.
[2] Nieto J. J., O'Regan D., Variational approach to impulsive differential equations, Nonlinear Anal., 2009, 10:680-690.
[3] Nieto J. J., Variational formulation of a damped Dirichlet impulsive problem, Appl. Math. Lett., 2010, 23:940-942.
[4] Qian A., Li C., Infinitely many solutions for a Robin boundary value problem, Int. J. Differ. Equ., 2010, 2010:1-9, Article ID 548702.
[5] Rabinowitz P. H., Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math., vol. 65, Amer. Math. Soc., Providence, RI. 1986.
[6] Schechter M., A variation of the mountain pass lemma and applications, J. Lond. Math. Soc., Second Series, 1991, 44:491-502.
[7] Tian Y., Ge W. G., Applications of variational methods to boundary value problem for impulsive differential equations, Proc. Edinburgh Math. Soc., 2008, 51:509-527.
[8] Willem M., Minimax Theorems, Birkhäuser, Boston, 1996.
[9] Xiao J., Nieto J. J., Variational approach to some damped Dirichlet nonlinear impulsive differential equations, J. Franklin. Inst., 2011, 348:369-377.
[10] Ye Y., Tang C. L., Infinitely many solutions for fourth-order elliptic equations, J. Math. Anal. Appl., 2012, 394:841-854.
国家自然科学基金资助项目(11571197);高等学校博士学科点专项科研基金(20133705110003);山东省自然科学基金(ZR2012AQ024,ZR2014AM007)及山东省高等学校科技计划项目(J16LI11);山东财经大学杰出青年项目培育计划
/
〈 |
|
〉 |