Cerami条件下脉冲边值问题古典解的存在性

刘健, 赵增勤

数学学报 ›› 2016, Vol. 59 ›› Issue (5) : 609-622.

PDF(495 KB)
PDF(495 KB)
数学学报 ›› 2016, Vol. 59 ›› Issue (5) : 609-622. DOI: 10.12386/A2016sxxb0056
论文

Cerami条件下脉冲边值问题古典解的存在性

    刘健1, 赵增勤2
作者信息 +

Existence of Classical Solutions to Impulsive Boundary Value Problems under Cerami Condition

    Jian LIU1, Zeng Qin ZHAO2
Author information +
文章历史 +

摘要

在非线性项不满足Ambrosetti-Rabinowitz条件时研究脉冲微分方程边值问题,在原来的变分结构下,利用Cerami条件下成立的临界点理论来研究脉冲微分方程边值问题古典解的存在性和多重性.

Abstract

We consider the existence and multiplicity of solutions for a class of nonlinear impulsive problems when nonlinearity does not satisfy Ambrosetti-Rabinowitz condition. We obtain some new existence theorems of solutions by using critical theorems under Cerami condition.

关键词

Cerami条件 / 脉冲 / 古典解

Key words

Cerami condition / impulsive / classical solutions

引用本文

导出引用
刘健, 赵增勤. Cerami条件下脉冲边值问题古典解的存在性. 数学学报, 2016, 59(5): 609-622 https://doi.org/10.12386/A2016sxxb0056
Jian LIU, Zeng Qin ZHAO. Existence of Classical Solutions to Impulsive Boundary Value Problems under Cerami Condition. Acta Mathematica Sinica, Chinese Series, 2016, 59(5): 609-622 https://doi.org/10.12386/A2016sxxb0056

参考文献

[1] Liu J., Zhao Z. Q., An application of variational methods to second order impulsive differential equation with derivative dependence, Electron. J. Differ. Equ., 2014, 2014(62):1-13.
[2] Nieto J. J., O'Regan D., Variational approach to impulsive differential equations, Nonlinear Anal., 2009, 10:680-690.
[3] Nieto J. J., Variational formulation of a damped Dirichlet impulsive problem, Appl. Math. Lett., 2010, 23:940-942.
[4] Qian A., Li C., Infinitely many solutions for a Robin boundary value problem, Int. J. Differ. Equ., 2010, 2010:1-9, Article ID 548702.
[5] Rabinowitz P. H., Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math., vol. 65, Amer. Math. Soc., Providence, RI. 1986.
[6] Schechter M., A variation of the mountain pass lemma and applications, J. Lond. Math. Soc., Second Series, 1991, 44:491-502.
[7] Tian Y., Ge W. G., Applications of variational methods to boundary value problem for impulsive differential equations, Proc. Edinburgh Math. Soc., 2008, 51:509-527.
[8] Willem M., Minimax Theorems, Birkhäuser, Boston, 1996.
[9] Xiao J., Nieto J. J., Variational approach to some damped Dirichlet nonlinear impulsive differential equations, J. Franklin. Inst., 2011, 348:369-377.
[10] Ye Y., Tang C. L., Infinitely many solutions for fourth-order elliptic equations, J. Math. Anal. Appl., 2012, 394:841-854.

基金

国家自然科学基金资助项目(11571197);高等学校博士学科点专项科研基金(20133705110003);山东省自然科学基金(ZR2012AQ024,ZR2014AM007)及山东省高等学校科技计划项目(J16LI11);山东财经大学杰出青年项目培育计划

PDF(495 KB)

216

Accesses

0

Citation

Detail

段落导航
相关文章

/