由斜坡函数激发的神经网络算子逼近

虞旦盛, 周平

数学学报 ›› 2016, Vol. 59 ›› Issue (5) : 623-638.

PDF(475 KB)
PDF(475 KB)
数学学报 ›› 2016, Vol. 59 ›› Issue (5) : 623-638. DOI: 10.12386/A2016sxxb0057
论文

由斜坡函数激发的神经网络算子逼近

    虞旦盛1, 周平2
作者信息 +

Approximation by Neural Network Operators Activated by Smooth Ramp Functions

    Dan Sheng YU1, Ping ZHOU2
Author information +
文章历史 +

摘要

首先,引入一种由斜坡函数激发的神经网络算子,建立了其对连续函数逼近的正、逆定理,给出了其本质逼近阶.其次,引入这种神经网络算子的线性组合以提高逼近阶,并且研究了这种组合的同时逼近问题.最后,利用Steklov函数构造了一种新的神经网络算子,建立了其在Lp[a,b]空间逼近的正、逆定理.

Abstract

Firstly, we introduce a kind of neural network operators by using a new smooth ramp function. We establish both the direct and converse results of approximation by the new operators, and thus give the essential approximation rate. Secondly, we use a linear combination of the new operators to improve the approximation rate for smooth functions. The uniform simultaneous approximation of the combination is also discussed. Finally, we introduce a new kind of neural network operators by using the Steklov functions, and establish both the direct and converse results of the approximation in Lp[a,b] spaces.

关键词

神经网络算子 / 插值 / 一致逼近 / 斜坡函数 / 同时逼近

Key words

neural netwrok operators / interpoltion / uniform approximation / ramp functions / simultaneous approximation

引用本文

导出引用
虞旦盛, 周平. 由斜坡函数激发的神经网络算子逼近. 数学学报, 2016, 59(5): 623-638 https://doi.org/10.12386/A2016sxxb0057
Dan Sheng YU, Ping ZHOU. Approximation by Neural Network Operators Activated by Smooth Ramp Functions. Acta Mathematica Sinica, Chinese Series, 2016, 59(5): 623-638 https://doi.org/10.12386/A2016sxxb0057

参考文献

[1] Anastassiou G. A., Univariate hyperbolic tangent neural network approximation, Math. Comput. Modelling, 2011, 53(5-6):1111-1132.
[2] Anastassiou G. A., Multivariate hyperbolic tangent neural network approximation, Comput. Math. Appl., 2011, 61(4):809-821.
[3] Anastassiou G. A., Multivariate sigmoidal neural network approximation, Neural Networks, 2011, 24(4):378-386.
[4] Anastassiou G. A., Intelligent Systems:Approximation by Artificial Neural Networks, Intell. Syst. Ref. Libr., Vol. 19, Springer-Verlag, Berlin, 2011.
[5] Cao F. L., Chen Z. X., The constructive and approximation of a class of neural network operators with ramp functions, J. Comupt. Anal. Appl., 2012, 14(1):101-112.
[6] Cao F. L., Zhang Y. Q., He Z. R., Interpolation and rates of convergence for a class of neural networks, Appl. Math. Modelling, 2009, 33(3):1441-1456.
[7] Castarelli D., Interpolation by neural network operators activated by ramp functions, J. Math. Anal. Appl., 2014, 419:574-582.
[8] Castarelli D., Spigler R., Approximation results for neural network operators activated by sigmoidal functions, Neural Networks, 2013, 44:101-106.
[9] Castarelli D., Spigler R., Multivariate neural network operators with sigmoidal activation functions, Neural Networks, 2013, 48:72-77.
[10] Castarelli D., Spigler R., Convergence of a family of neural network operators of the Kantorovich type, J. Approx. Theory, 2014, 185:80-90.
[11] Cheang G. H. L., Approximation with neural networks activated by ramp sigmoidals, J. Approx. Theory, 2010, 162(9):1450-1465.
[12] Ditzian Z., Totik V., Moduli of Smoothness, Springer-Verlag, New York, 1987.
[13] Ma G. C., Yu D. S., Zhou P., On approximation by univariate sigmoidal neural networks, Acta Math. Sinica, Chin. Ser., 2014, 57(1):89-100.
[14] Yu D. S., Approximation by neural networks with sigmoidal functions, Acta Math. Sinica, Engl. Ser., 2013, 29(10):2013-2026.
[15] Yu D. S., Zhou P., Rates of approximation by neural networks with four layers, J. Comput. Anal. Appl., 2015, 18(3):551-558.

基金

周平受加拿大自然科学及工程研究基金资助(NSERC)

PDF(475 KB)

332

Accesses

0

Citation

Detail

段落导航
相关文章

/