
拟线性双曲型方程组Cauchy问题行波解的稳定性
Stability of Traveling Wave Solutions to Cauchy Problem for Quasilinear Hyperbolic Systems
当拟线性双曲系统线性退化时,其Cauchy问题最左族和最右族行波解是稳定的.而其中间族行波解未必稳定.我们在弱线性退化条件下,证明了拟线性双曲系统Cauchy问题适当小的W1,1∩L∞范数适当小的行波解是稳定的,并将此稳定性应用于可对角化的拟线性双曲系统和Chaplygin气体动力学方程组.
Under linearly degenerate condition, the stability of leftmost and right-most families of traveling wave solutions to Cauchy problem for quasilinear hyperbolic system had been established in our recent work, while for the intermediate families, their possible instability is illustrated. This paper is concerned with the stability of traveling wave solutions with appropriate small W1,1∩L∞ norm to Cauchy problem for quasilinear hyperbolic system under weakly linearly degenerate condition, and the stability results can be applied to the diagonalizable quasilinear hyperbolic systems and Chaplygin gas.
拟线性双曲系统 / 初值问题 / 行波解 / 弱线性退化 {{custom_keyword}} /
hyperbolic system / Cauchy problem / traveling wave solution / weakly lin-early degenerate {{custom_keyword}} /
[1] Bressan A., Contractive metrics for nonlinear hyperbolic systems, Indiana Univ. Math. J., 1988, 37:409-420.
[2] Carbou G., Hanouzet B., Natalini R., Semilinear behavior of totally linearly degenerate hyperbolic systems with relaxation, J. Diff. Equ., 2009, 2460:291-319.
[3] Dai W. R., Kong D. X., Asymptotic behavior of global classical solutions of general quasilinear hyperbolic systems with weakly linear degeneracy, Chin. Ann. Math. Series B, 2006, 27:263-286.
[4] Dai W. R., Kong D. X., Global existence and asymptotic behavior of classical solutions of quasilnear hyper-bolic systems with linear degenerate characteristic fields, J. Diff. Equ., 2007, 235:127-165.
[5] Kong D. X., Yang T., Asymptotic behavior of global classical solutions of quasilinear hyperbolic systems, Comm. Partial Diff. Equ., 2003, 28:1203-1220.
[6] Lax P. D., Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math., 1957, 10:537-566.
[7] Liu C. M., Liu J. L., Stability of traveling wave solutions to Cauchy problem of diagonalizable quasilinear hyperbolic systems, Discrete Contin. Dyn. Syst., 2014, 34:4735-4749.
[8] Liu C. M., Qu P., Existence and stability of traveling waves for quasilinear hyperbolic systems, J. Math. Pure Appl., 2013, 100:34-68.
[9] Liu J. L., Zhou Y., Asymptotic behaviour of global classical solutions of diagonalizable quasilinear hyperbolic systems, Math. Meth. Appl. Sci., 2007, 30:479-500.
[10] Li T. T., Global Classical Solutions for Quasilinear Hyperbolic Systems, Research in Applied Mathematics, Masson, John Wiley, Paris, 1994.
[11] Li T. T., Mechanism of the formation of singularities for quasilinear hyperbolic systems, Inter. J. Numerical Ana. Modeling, 2009, 6:520-531.
[12] Li T. T., Liu F. G., Singularity caused by eigenvectors for quasilinear hyperbolic systems, Comm. Partial Diff. Equ., 2004, 28:477-503.
[13] Li T. T., Wang L. B., Global Propagation of Regular Nonlinear Hyperbolic Waves, Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, 2009.
[14] Li T. T., Yu W. C., Boundary Value Problems for Quasilinear Hyperbolic Systems, Duke University Math-ematics Series V, North Carolina, 1985.
[15] Li T. T., Zhou Y., Kong D. X., Weak linear degeneracy and global classical solutions for general quasilinear hyperbolic systems, Comm. Partial Diff. Equ., 1994, 19:1263-1317.
[16] Li T. T., Zhou Y., Kong D. X., Global classical solutions for general quasilinear hyperbolic systems with decay initial data, Nonlinear Anal., 1997, 28:1299-1332.
[17] Majda A., Compressible Fluid Flow and System of Conservation Laws in Several Space Variables, Volume 53, Applied Mathematical Sciences, Springer, New York, 1984.
[18] Qu P., ODE singularity for blocked linearly degenerate quasilinear hyperbolic systems, Math. Meth. Appl. Sci., 2011, 34:950-957.
[19] Qu P., Mechanism of singularity formation for quasilinear hyperbolic systems with linearly degenerate char-acteristic fields, J. Diff. Equ., 2011, 251:2066-2081.
[20] Serre D., Multidimensional shock interaction for a chaplygin gas, Archive Rational Mech. Anal., 2009, 191:539-577.
[21] Shao Z. Q., A note on the asymptotic behavior of global classical solutions of diagonalizable quasilinear hyperbolic systems, Nonlinear Anal., 2010, 73:600-613.
[22] Yang Y. F., Mechanism of the formation of singularities for diagonal systems with linearly degenerate char-acteristic fields, Comm. Pure Appl. Anal., 2009, 9:757-768.
[23] Zhou Y., Global classical solutions to quasilinear hyperbolic systems with weak linear degeneracy, Chin. Ann. Math. Ser. B, 2004, 25:37-56.
国家自然科学基金青年资助项目(11401421)
/
〈 |
|
〉 |