扭Heisenberg-Virasoro代数上的Poisson结构
Poisson Structure on the Twisted Heisenberg-Virasoro Algebra
Poisson代数是指同时具有代数结构和李代数结构的一类代数,其乘法与李代数乘法满足Leibniz法则.扭Heisenberg-Virasoro代数是一类重要的无限维李代数,是次数不超过1的微分算子李代数W(0)的普遍中心扩张,与曲线的模空间有密切联系.本文主要研究扭Heisenberg-Virasoro代数上的Poisson结构,首先确定了李代数W(0)上的Poisson结构,进而给出了扭Heisenberg-Virasoro代数上的Poisson结构.
Poisson algebras are algebras with an algebra structure and a Lie algebra structure, both of which satisfy the Leibniz law. The twisted Heisenberg-Virasoro algebra is the universal central extension of the Lie algebra W(0) of differential operators of order at most one, which is connected with certain moduli spaces of curves. This paper mainly determines the Poisson structure of the Lie algebra W(0) as well as the twisted Heisenberg-Virasoro algebra.
扭Heisenberg-Virasoro代数 / Poisson代数 / Leibniz法则 / Witt代数 {{custom_keyword}} /
twisted Heisenberg-Virasoro algebra / Poisson algebra / Leibniz rule {{custom_keyword}} /
[1] Arbarello E., DeConcini C., Kac V. G., Procesi C., Moduli spaces of curves and representation theory, Commun. Math. Phys., 1988, 117:1-36.
[2] Cheng S., Lam N., Finite conformal modules over the N=2,3,4 superconformal algebras, J. Math. Phys., 2001, 42(2):906-933.
[3] Jin Q., Tong J., Poisson algebra structures on toroidal Lie algebras, Chinese Ann. Math. Ser. A, 2007, 28(1):57-70.
[4] Jin Q., Tong J., Structures of noncommutative Poisson algebras on extended affine Lie algebras, Acta Math-ematica Sinica, Chinese Series, 2011, 54(4):561-570.
[5] Kubo F., Finite-dimensional non-commutative Poisson algebras, J. Pure Appl. Algebra, 1996, 113:307-314.
[6] Kubo F., Non-commutative Poisson algebra structures on affine Kac-Moody algebras, J. Pure Appl. Algebra, 1998, 126:267-286.
[7] Li Y., Gao S., Liu D., Poisson structure on the Lie algebra W(2,2), Chinese Ann. Math. Ser. A, 2016, in press.
[8] Liu D., Jiang C., Harish-Chandra modules over the twisted Heisenberg-Virasoro algebra, J. Math. Phys., 2008, 49:012901, 13 pp.
[9] Lv R., Zhao K., Classification of irreducible weight modules over the twisted Heisenberg-Virasoro algebra, Commun. Contemp. Math., 2010, 12(2):183-205.
[10] Roger C., Unterberger J., The Schrödinger-Virasoro Lie group and algebra:representation theory and cohomological study, Ann. Henri Poincaré 2006, 7:1477-1529.
[11] Shen R., Jiang C., The Derivation algebra and automorphism group of the twisted Heisenberg-Virasoro Algebra, Commun. Alg., 2006, 34:2547-2558.
[12] Yao Y., Poisson algebra structures on the Witt algebra and the Virasoro algebra, Chinese Ann. Math. Ser. A, 2013, 34(1):111-128.
[13] Zusmanovich P., A compendium of Lie structures on tensor products, J. Math. Sci., 2013, 414:40-81.
国家自然科学基金资助项目(11371134,11201141);浙江省自然科学基金资助项目(LZ14A010001,LQ12A01005,LY16A010016)
/
〈 | 〉 |