
复平面上解析Banach空间的拟不变子空间
Quasi-Invariant Subspaces in Analytic Banach Spaces over the Complex Plane
讨论复平面上解析Banach空间具有任意指标的拟不变子空间的存在性问题.首先给出一类复平面上解析Banach空间存在任意指标拟不变子空间的判定定理.作为应用,证明了Fock型空间Fp(C)={f∈Hol(C):(1)/(π)∫C|f(z)|pe-|z|2dA(z)< +∞,1≤p< +∞}与Hilbert空间H={f∈Hol(C):f∈Hol(C):(1)/(π)∫C|f(z)|2e-|z|dA(z)<+∞}具有任意指标的拟不变子空间.
We investigate the existence of quasi-invariant subspaces with arbitrary index.We first give a general criterion.As applications, we show that both the Focktype spaces Fp(C)={f∈Hol(C):(1)/(π)∫C|f(z)|pe-|z|2dA(z)< +∞, 1≤p< +∞} and the Hilbert space H={f∈Hol(C):f∈Hol(C):(1)/(π)∫C|f(z)|2e-|z|dA(z)<+∞} have quasiinvariant subspaces with arbitary index.
解析Banach空间 / 拟不变子空间 / 拟不变子空间的指标 {{custom_keyword}} /
analytic Banach space / qusi-invariant subspace / index of quasi-invariant subspace {{custom_keyword}} /
[1] Apostol C., Bercovici H., Foias C., et al., Invariant subspaces, dilation theory, and the structure of the predual of a dual algebra, I, J. Funct. Anal., 1985, 63:369-404.
[2] Beurling A., On two problems concerning linear transformations in Hilbert space, Acta Math., 1949, 81(1):239-255.
[3] Borechev A., Invariant subspaces of given index in Banach spaces of analytic functions, J. Reine Angew. Math., 1998, 505:23-44.
[4] Chen X., Guo K., Hou S., Analytic Hilbert space over complex plane C, J. Math. Anal. Appl., 2002, 268:684-700.
[5] Guo K., Zheng D., Invariant subspaces, quasi-invariant subspaces and Hankel operators, J. Funct. Anal., 2001, 187:308-342.
[6] Hedenmalm H., An invariant subspace of the Bergman space having the codimension two property, J. Reine Angew. Math., 1993, 443:1-9.
[7] Hedenmalm H., Richter S., Seip K., Interpolating sequences and invariant subspaces of given index in the Bergman spaces, J. Reine Angew. Math., 1996, 477:13-30.
[8] Hou S., Wei S., Zheng D., et al., Zero-based subspaces and quasi-invariant subspaces of the Bargmann-Fock space, Science China Math., 2012, 55(9):1749-1970.
[9] Richter S., Invariant subspaces in Banach spaces of analytic functions, Trans. Amer. Math. Soc., 1987, 304:585-616.
[10] Richter S., Sundberg C., Multiples and invariant subspace in the Dirichlet space, J. Operator Theory, 1992, 28:167-186.
国家自然科学基金资助项目(11571248,11171245)
/
〈 |
|
〉 |