复平面上解析Banach空间的拟不变子空间

侯绳照, 罗晴, 卫淑云

数学学报 ›› 2017, Vol. 60 ›› Issue (1) : 97-112.

PDF(407 KB)
PDF(407 KB)
数学学报 ›› 2017, Vol. 60 ›› Issue (1) : 97-112. DOI: 10.12386/A2017sxxb0009
论文

复平面上解析Banach空间的拟不变子空间

    侯绳照1, 罗晴2, 卫淑云3
作者信息 +

Quasi-Invariant Subspaces in Analytic Banach Spaces over the Complex Plane

    Sheng Zhao HOU1, Qing LUO2, Shu Yun WEI3
Author information +
文章历史 +

摘要

讨论复平面上解析Banach空间具有任意指标的拟不变子空间的存在性问题.首先给出一类复平面上解析Banach空间存在任意指标拟不变子空间的判定定理.作为应用,证明了Fock型空间Fp(C)={f∈Hol(C):(1)/(π)∫C|fz)|pe-|z|2dAz)< +∞,1≤p< +∞}与Hilbert空间H={f∈Hol(C):f∈Hol(C):(1)/(π)∫C|fz)|2e-|z|dAz)<+∞}具有任意指标的拟不变子空间.

Abstract

We investigate the existence of quasi-invariant subspaces with arbitrary index.We first give a general criterion.As applications, we show that both the Focktype spaces Fp(C)={f∈Hol(C):(1)/(π)∫C|f(z)|pe-|z|2dA(z)< +∞, 1≤p< +∞} and the Hilbert space H={f∈Hol(C):f∈Hol(C):(1)/(π)∫C|f(z)|2e-|z|dA(z)<+∞} have quasiinvariant subspaces with arbitary index.

关键词

解析Banach空间 / 拟不变子空间 / 拟不变子空间的指标

Key words

analytic Banach space / qusi-invariant subspace / index of quasi-invariant subspace

引用本文

导出引用
侯绳照, 罗晴, 卫淑云. 复平面上解析Banach空间的拟不变子空间. 数学学报, 2017, 60(1): 97-112 https://doi.org/10.12386/A2017sxxb0009
Sheng Zhao HOU, Qing LUO, Shu Yun WEI. Quasi-Invariant Subspaces in Analytic Banach Spaces over the Complex Plane. Acta Mathematica Sinica, Chinese Series, 2017, 60(1): 97-112 https://doi.org/10.12386/A2017sxxb0009

参考文献

[1] Apostol C., Bercovici H., Foias C., et al., Invariant subspaces, dilation theory, and the structure of the predual of a dual algebra, I, J. Funct. Anal., 1985, 63:369-404.
[2] Beurling A., On two problems concerning linear transformations in Hilbert space, Acta Math., 1949, 81(1):239-255.
[3] Borechev A., Invariant subspaces of given index in Banach spaces of analytic functions, J. Reine Angew. Math., 1998, 505:23-44.
[4] Chen X., Guo K., Hou S., Analytic Hilbert space over complex plane C, J. Math. Anal. Appl., 2002, 268:684-700.
[5] Guo K., Zheng D., Invariant subspaces, quasi-invariant subspaces and Hankel operators, J. Funct. Anal., 2001, 187:308-342.
[6] Hedenmalm H., An invariant subspace of the Bergman space having the codimension two property, J. Reine Angew. Math., 1993, 443:1-9.
[7] Hedenmalm H., Richter S., Seip K., Interpolating sequences and invariant subspaces of given index in the Bergman spaces, J. Reine Angew. Math., 1996, 477:13-30.
[8] Hou S., Wei S., Zheng D., et al., Zero-based subspaces and quasi-invariant subspaces of the Bargmann-Fock space, Science China Math., 2012, 55(9):1749-1970.
[9] Richter S., Invariant subspaces in Banach spaces of analytic functions, Trans. Amer. Math. Soc., 1987, 304:585-616.
[10] Richter S., Sundberg C., Multiples and invariant subspace in the Dirichlet space, J. Operator Theory, 1992, 28:167-186.

基金

国家自然科学基金资助项目(11571248,11171245)

PDF(407 KB)

383

Accesses

0

Citation

Detail

段落导航
相关文章

/