
一类Smale空间上的C*-代数自同构的熵
The Entropies of the Canonical Automorphisms of C*-algebras from Some Smale Spaces
Ian Putnam利用Smale空间上的渐近等价关系定义了广群C*-代数及其典则自同构.本文在零维Smale空间的情形下,计算此类C*-自同构的逼近熵,证明了相应C*-动力系统关于CNT熵和逼近熵的“变分原理”成立.由此推演出此类Smale空间上的Bowen测度诱导的C*-代数上的态是此典则自同构的唯一平衡态.
We show that Voiculescu's topological entropy of the canonical automorphism of the C*-algebra arising from the asymptotic equivalence on every irreducible zero-dimensional Smale space is equal to the topological entropy of the original topological dynamics.For the related C*-dynamical system, we have the "variational principle" with respect to the CNT-entropy and the topological entropy, and also show that the state defined by the Bowen measure of the Smale space is the unique equilibrium state of the canonical automorphism.
拓扑熵 / 广群C*-代数 / 有限类子平移 / 变分原理 {{custom_keyword}} /
topological entropy / groupoid C*-algebra / subshift of finite type / variational principle {{custom_keyword}} /
[1] Brown N. P., Topological entropy in exact C*-algebras, Math. Ann., 1999, 314:347-367.
[2] Connes A., Narnhorfer H., Thirring W., Dynamical entropy of C*-algebras and von Neumann algebras, Commun. Math. Phys., 1987, 112:691-719.
[3] Connes A., Størmer E., Entropy of automorphisms of Ⅱ1-von Neumann algebras, Acta Math., 1975, 134:289-306.
[4] Hou C. J., The groupoid C*-algebras from Smale spaces and their smooth dense subalgebras, Ph. D Thesis in Fudan University, Shanghai, 2000.
[5] Katok A., Hasselblatt B., Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and Its Application, Cambridge University Press, Cambridge, 1996, 54.
[6] Kaminker J., Putnam I., Spielberg J., Operator Algebras and Hyperbolic Dynamics, in Operator Algebras and Quantum Field Theory, Accademia Nazionale dei Lincei Roma, July 1-6, 1996, International Press, 1997:525-532.
[7] Neshveyev S., Størmer E., The variational principle for a class of asymptotically abelian C*-algebras, Commun. Math. Phys., 2000, 215:177-196.
[8] Putnam I., C*-algebras from Smale spaces, Cana. J. Math., 1996, 48:175-195.
[9] Putnam I., Hyperbolic Systems and Generalized Cuntz-Krieger Algebras, Lecture Notes from the Summer School in Operator Algebras in 1996, Denmark, 1996.
[10] Putnam I., Spielberg J., On the structure of C*-algebras associated with hyperbolic dynamical systems, J. Fun. Anal., 1999, 163:279-299.
[11] Renault J., A Groupoid Approach to C*-algebras, Lecture Notes in Math., Springer-Verlag, Berlin, 1980, 793.
[12] Ruelle D., Thermodynamic Formalism, Encyclopedia of Mathematics and Its Applications, Addison-Wesley, Publishing Company, Inc. 1978, 5.
[13] Ruelle D., Noncommutative algebras for hyperbolic diffeomorphisms, Invent. Math., 1988, 93:1-13.
[14] Størmer E., A Survey of Noncommutative Dynamical Entropy, Encyclopadedia of Mathematical Sciences 126, on Operator Algebras and Noncommutative Geometry VⅡ, Springer-Verlag, Berlin, 2002:148-198.
[15] Voiculescu D., Dynamical approximation entropies and topological entropy in operator algebras, Commun. Math. Phys., 1995, 170(1995):249-281.
[16] Walters P., An Introduction to Ergodic Theory, Graduate Texts in Mathematics, Springer-Verlag, Berlin, 1982, 79.
国家自然科学基金资助项目(11271224,11371290,11371222)
/
〈 |
|
〉 |