一类Smale空间上的C*-代数自同构的熵

侯成军

数学学报 ›› 2017, Vol. 60 ›› Issue (1) : 149-158.

PDF(532 KB)
PDF(532 KB)
数学学报 ›› 2017, Vol. 60 ›› Issue (1) : 149-158. DOI: 10.12386/A2017sxxb0013
论文

一类Smale空间上的C*-代数自同构的熵

    侯成军
作者信息 +

The Entropies of the Canonical Automorphisms of C*-algebras from Some Smale Spaces

    Cheng Jun HOU
Author information +
文章历史 +

摘要

Ian Putnam利用Smale空间上的渐近等价关系定义了广群C*-代数及其典则自同构.本文在零维Smale空间的情形下,计算此类C*-自同构的逼近熵,证明了相应C*-动力系统关于CNT熵和逼近熵的“变分原理”成立.由此推演出此类Smale空间上的Bowen测度诱导的C*-代数上的态是此典则自同构的唯一平衡态.

Abstract

We show that Voiculescu's topological entropy of the canonical automorphism of the C*-algebra arising from the asymptotic equivalence on every irreducible zero-dimensional Smale space is equal to the topological entropy of the original topological dynamics.For the related C*-dynamical system, we have the "variational principle" with respect to the CNT-entropy and the topological entropy, and also show that the state defined by the Bowen measure of the Smale space is the unique equilibrium state of the canonical automorphism.

关键词

拓扑熵 / 广群C*-代数 / 有限类子平移 / 变分原理

Key words

topological entropy / groupoid C*-algebra / subshift of finite type / variational principle

引用本文

导出引用
侯成军. 一类Smale空间上的C*-代数自同构的熵. 数学学报, 2017, 60(1): 149-158 https://doi.org/10.12386/A2017sxxb0013
Cheng Jun HOU. The Entropies of the Canonical Automorphisms of C*-algebras from Some Smale Spaces. Acta Mathematica Sinica, Chinese Series, 2017, 60(1): 149-158 https://doi.org/10.12386/A2017sxxb0013

参考文献

[1] Brown N. P., Topological entropy in exact C*-algebras, Math. Ann., 1999, 314:347-367.
[2] Connes A., Narnhorfer H., Thirring W., Dynamical entropy of C*-algebras and von Neumann algebras, Commun. Math. Phys., 1987, 112:691-719.
[3] Connes A., Størmer E., Entropy of automorphisms of Ⅱ1-von Neumann algebras, Acta Math., 1975, 134:289-306.
[4] Hou C. J., The groupoid C*-algebras from Smale spaces and their smooth dense subalgebras, Ph. D Thesis in Fudan University, Shanghai, 2000.
[5] Katok A., Hasselblatt B., Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and Its Application, Cambridge University Press, Cambridge, 1996, 54.
[6] Kaminker J., Putnam I., Spielberg J., Operator Algebras and Hyperbolic Dynamics, in Operator Algebras and Quantum Field Theory, Accademia Nazionale dei Lincei Roma, July 1-6, 1996, International Press, 1997:525-532.
[7] Neshveyev S., Størmer E., The variational principle for a class of asymptotically abelian C*-algebras, Commun. Math. Phys., 2000, 215:177-196.
[8] Putnam I., C*-algebras from Smale spaces, Cana. J. Math., 1996, 48:175-195.
[9] Putnam I., Hyperbolic Systems and Generalized Cuntz-Krieger Algebras, Lecture Notes from the Summer School in Operator Algebras in 1996, Denmark, 1996.
[10] Putnam I., Spielberg J., On the structure of C*-algebras associated with hyperbolic dynamical systems, J. Fun. Anal., 1999, 163:279-299.
[11] Renault J., A Groupoid Approach to C*-algebras, Lecture Notes in Math., Springer-Verlag, Berlin, 1980, 793.
[12] Ruelle D., Thermodynamic Formalism, Encyclopedia of Mathematics and Its Applications, Addison-Wesley, Publishing Company, Inc. 1978, 5.
[13] Ruelle D., Noncommutative algebras for hyperbolic diffeomorphisms, Invent. Math., 1988, 93:1-13.
[14] Størmer E., A Survey of Noncommutative Dynamical Entropy, Encyclopadedia of Mathematical Sciences 126, on Operator Algebras and Noncommutative Geometry VⅡ, Springer-Verlag, Berlin, 2002:148-198.
[15] Voiculescu D., Dynamical approximation entropies and topological entropy in operator algebras, Commun. Math. Phys., 1995, 170(1995):249-281.
[16] Walters P., An Introduction to Ergodic Theory, Graduate Texts in Mathematics, Springer-Verlag, Berlin, 1982, 79.

基金

国家自然科学基金资助项目(11271224,11371290,11371222)

PDF(532 KB)

611

Accesses

0

Citation

Detail

段落导航
相关文章

/