
Grunsky算子的本性模
Essential Norm of the Grunsky Operator
利用一个推广的Grunsky不等式,借助于单叶函数的拟共形延拓的边界伸缩商,我们给出Grunsky算子的本性模的一些估计.作为推论,我们推出Grunsky算子的紧性准则.
By using a generalized Grunsky inequality, we obtain some estimates of the essential norm of the Grunsky operator for a univalent function in terms of the boundary distortion of the quasiconformal extension. As a corollary, we deduce the compactness criterion of the Grunsky operator.
拟共形映射 / 单叶函数 / Grunsky算子 / 本性模 {{custom_keyword}} /
quasiconformal mapping / univalent function / Grunsky operator / essential norm {{custom_keyword}} /
[1] Ahlfors L., Weill G., A uniqueness theorem for Beltrami equations, Proc. Amer. Math. Soc., 1962, 13:975-978.
[2] Gardiner F. P., Sullivan D., Symmetric structures on a closed curve, Amer. J. Math., 1992, 114:683-736.
[3] Grunsky H., Koeffizientenbedingungen für schlicht abbildende meromorphe Funktionen, Math. Z., 1939, 45:29-61.
[4] Krushkal S. L., Grunsky coefficient inequalities, Carathéodory metric and extremal quasiconformal mappings, Comm. Math. Helv., 1989, 64:650-660.
[5] Pommerenke Ch., Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
[6] Pommerenke Ch., Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992.
[7] Schur I., Ein Satzüber quadratische Formen mit komplexen Koeffizienten, Amer. J. Math., 1945, 67:472-480.
[8] Shen Y., On Grunsky operator, Sci. China Ser. A, 2007, 50:1805-1817.
[9] Shen Y., Faber polynomials with applications to univalent functions with quasiconformal extensions, Sci. China Ser. A, 522009, 52:2121-2131.
[10] Shen Y., The asymptotic Teichmüller space and the asymptotic Grunsky map, Proc. Royal Soc. Edinburgh, 2010, 140:651-672.
[11] Shen Y., On Grunsky inequalities and the exact domain of variablity of the Grunsky functional, Israel J. Math., 2011, 183:399-416.
[12] Takhtajan L., Teo Lee-Peng, Weil-Petersson metric on the universal Teichmüller space, Mem. Amer. Math. Soc., 2006, 183:861.
国家自然科学基金(11171080);中央高校基本研究科研业务费专项资金(2682015CX057);贵州师范大学博士启动基金(11904-05032130006)
/
〈 |
|
〉 |