n-强W-Gorenstein模

赵良, 周毅强

数学学报 ›› 2017, Vol. 60 ›› Issue (2) : 279-296.

PDF(539 KB)
PDF(539 KB)
数学学报 ›› 2017, Vol. 60 ›› Issue (2) : 279-296. DOI: 10.12386/A2017sxxb0023
论文

n-强W-Gorenstein模

    赵良1, 周毅强2
作者信息 +

On n-Strongly W-Gorenstein Mdules

    Liang ZHAO1, Yi Qiang ZHOU2
Author information +
文章历史 +

摘要

W是左R-模的自正交类.引入研究了相对于Wn-强W-Gorenstein模,这类模推广了强W-Gorenstein模、强Gorenstein投射模和n-强Gorenstein投射模.特别地,研究了自正交模类WPWIn-强W-Gorenstein模的性质.还研究了W-Gorenstein范畴的稳定性,得到了BCR)中WP-Gorenstein模的具体刻画,建立了关于n-强WP-Gorenstein(n-强WI-Gorenstein)模的Foxby等价.此外,对n-强WF-Gorenstein模的性质也有所研究.

Abstract

Let W be a self-orthogonal class of left R-modules. This paper concerns the class of n-strongly W-Gorenstein modules, which is a common generalization of strongly W-Gorenstein modules, strongly Gorenstein projective modules and n-strongly Gorenstein projective modules. Special attention is given to n-strongly WP-Gorenstein mod-ules and n-strongly WI-Gorenstein modules. The stability of n-strongly W-Gorenstein category is considered, some concrete characterizations of WP-Gorenstein modules in BC(R) are given and new versions of Foxby equivalence with respect to n-strongly WP-Gorenstein (resp., n-strongly WI-Gorenstein) modules are established. The properties of n-strongly WF-Gorenstein modules are also investigated.

关键词

n-强W-Gorenstein模 / n-强WP-Gorenstein模 / n-强WI-Gorenstein模 / n-强WF-Gorenstein模 / Foxby等价

Key words

n-strongly W-Gorenstein modules / n-strongly WP-Gorenstein modules / n-strongly WI-Gorenstein modules / n-strongly WF-Gorenstein modules / Foxby equivalence

引用本文

导出引用
赵良, 周毅强. n-强W-Gorenstein模. 数学学报, 2017, 60(2): 279-296 https://doi.org/10.12386/A2017sxxb0023
Liang ZHAO, Yi Qiang ZHOU. On n-Strongly W-Gorenstein Mdules. Acta Mathematica Sinica, Chinese Series, 2017, 60(2): 279-296 https://doi.org/10.12386/A2017sxxb0023

参考文献

[1] Auslander M., Bridger M., Stable Module Theory. Mem. Amer. Math. Soc., Vol. 94, Amer. Math. Soc., Providence, RI, 1969.
[2] Bennis D., Mahdou N., Strongly Gorenstein projective, injective and flat modules, J. Algebra Appl., 2007, 210:437-445.
[3] Bennis D., Mahdou N., A generalization of strongly Gorenstein projective modules, J. Algebra Appl., 2009, 8(2):219-227.
[4] Cartan H., Eilenberg S., Homological Algebra, Princeton University Press, Princeton, 1956.
[5] Cheatham T. J., Stone D. R., Flat and projective character modules, Proc. Amer. Math. Soc., 1981, 81:175-177.
[6] Christensen L. W., Gorenstein Dimensions, Springer, Berlin, 2000.
[7] Christensen L. W., Frankild A., Holm H., On Gorenstein projective, injective and flat dimensions-A functorial description with applications, J. Algebra, 2006, 302:231-279.
[8] Enochs E. E., Jenda O. M. G., Gorenstein injective and projective modules, Math. Z., 1995, 220:611-633.
[9] Enochs E. E., Jenda O. M. G., Torrecillas B., Gorenstein flat modules, Nanjing Daxue Xuebao (Shuxue Bannian Kan), 1993, 10:1-9.
[10] Enochs E. E., Jenda O. M. G., Relative Homological Algebra, Walter de Gruyter, Berlin, 2000.
[11] Foxby H. B., Gorenstein modules and related modules, Math. Scand., 1972, 31:267-284.
[12] Geng Y. X., Ding N. Q., W -Gorenstein modules, J. Algebra, 2011, 325:132-146.
[13] Golod E. S., G-dimension and generalized perfect ideas (in Russian), Algebraic geometry and its applications, Trudy Mat. Inst. Steklov, 1984, 165:62-66.
[14] Holm H., Gorenstein homological dimension, J. Pure Appl. Algebra, 2004, 189(1/3):167-193.
[15] Holm H., Jørgensen P., Semi-dualizing modules and related Gorenstein homological dimension, J. Pure Appl. Algebra, 2006, 205(2):423-445.
[16] Holm H., White D., Foxby equivalence over associative rings, J. Math. Kyoto Univ., 2007, 47(4):781-808.
[17] Liu Z. F., Huang Z. Y., Xu A. M., Gorenstein projective dimension relative to a semidualizing bimodule, Comm. Algebra, 2013, 41(1):1-18.
[18] Qiao H. S., Xie Z. Y., Strongly W -Gorenstein modules, Czechoslovak Math. J., 2013, 63(138):441-449.
[19] Rotman J. J., An Introduction to Homological Algebra, Academic Press, New York, 1979.
[20] Takahashi R., White D., Homlogical aspects of semidualizing modules, Math. Scand., 2010, 106:5-22.
[21] Vasconcelos W. V., Divisor Theory in Module Categories, North-Holland Publishing Co., Amsterdam, 1974.
[22] Sather-Wagstaff S., Sharif T., White D., Tate cohomology with respect to semidualizing modules, J. Algebra, 2010, 324:2336-2368.
[23] Sather-Wagstaff S., Sharif T., White D., Stability of Gorenstein categories, J. London Math. Soc., 2008, 77(2):481-502.
[24] Sather-Wagstaff S., Semidualizing modules, http://www.ndsu.edu/pubweb/~ssatherw.
[25] Sather-Wagstaff S., Homological algebra notes, http://math.ndsu.nodak.edu/faculty/ssatherw.
[26] Sather-Wagstaff S., Sharif T., White D., AB-contexts and stability for Gorenstein flat modules with respect to semidualizing modules, Algebr. Represent. Theor., 2011, 14:403-428.
[27] Wei J. Q., ω-Gorenstein modules, Comm. Algebra, 2008, 36:1817-1829.
[28] White D., Gorenstein homological dimension with respect to a semidualizing module, J. Commut. Algebra, 2010, 2(1):111-137.
[29] Xu A. M., Ding N. Q., On stability of Gorenstein categories, Comm. Algebra, 2013, 41:3793-3804.
[30] Yang X. Y., Li Z. K., Strongly Gorenstein projective, injective and flat modules, J. Algebra, 2008, 320, 2659-2674.
[31] Zhao G. Q., Huang Z. Y., n-strongly Gorenstein projective, injective and flat modules, Comm. Algebra, 2011, 39:3044-3062.
[32] Zhao L., Zhou Y. Q., DC-projective dimensions, Foxby equivalence and SDC-projective modules, J. Algebra Appl., 2016, 15(6):1650111(23 pages).

PDF(539 KB)

216

Accesses

0

Citation

Detail

段落导航
相关文章

/