
经典N=2李共形超代数的导子和第二上同调群
Derivations and the Second Cohomology Group of the Classical N=2 Lie Conformal Superalgebra
研究了经典N=2李共形超代数的导子和第二上同调群的结构,并应用第二上同调群的结果确定了该李共形超代数的泛中心扩张.
We studied the derivations and the second cohomology group of the classical N=2 Lie conformal superalgebra. Furthermore, we investigated the universal central extension of this Lie conformal superalgebra by applying the result on the second cohomology group.
李共形超代数 / 共形导子 / 第二上同调群 / 泛中心扩张 {{custom_keyword}} /
Lie conformal superalgebra / conformal derivations / the second cohomology group / universal central extension {{custom_keyword}} /
[1] Boyallian C., Kac V. G., Liberati J. I., et al., Representations of simple finite Lie conformal superalgebras of type W and S, J. Math. Phys., 2010, 47(4):712-730.
[2] Boyallian C., Kac V. G., Liberati J. I., Classification of finite irreducible modules over the Lie conformal superalgebra CK 6, Commun. Math. Phys., 2013, 317(2):503-546.
[3] Bakalov B., Kac V. G., Voronov A., Cohomology of conformal algebras, Commun. Math. Phys., 1998, 200(3):561-598.
[4] Cheng S., Kac V. G., Conformal modules, Asian J. Math., 1997, 1(1):181-193
[5] Cheng S., Kac V. G., Wakimoto M., Extensions of Conformal Modules, in:Topological Field Theory, Primitive Forms and Related Topics (Kyoto), in:Progress in Math., Vol. 160, Birkhöuser, Boston, 1998:33-57; q-alg/9709019.
[6] D'Andrea A., Kac V. G., Structure theory of finite conformal algebras, Selecta Math., New Ser., 1998, 4(3):377-418.
[7] Fattori D., Kac V. G., Classification of finite simple Lie conformal superalgebras, J. Algebra, 2002, 258(1):23-59.
[8] Hong Y. Y., Central extensions and conformal derivations of a class of Lie conformal algebras, arXiv:1502.02770v2[math.QA].
[9] Kac V. G., Lau M., Pianzola A., Differential conformal superalgebras and their forms, Adv. Math., 2009, 222(3):809-861.
[10] Kac V. G., Vertex Algebras for Beginners, 2nd Edition, Amer. Math. Soc., Providence, RI, 1998.
[11] Kac V. G., Formal Distribution Algebras and Conformal Algebras, Brisbane Congress in Math. Phys., July 1997.
[12] Sole A., Kac V. G., Lie conformal algebra cohomology and the variational complex, Commun. Math. Phys., 2009, 292(3):667-719.
[13] Su Y. C., Yuan L. M., Schrödinger-Virasoro Lie conformal algebra, J. Math. Phys., 2013, 54(5):053503.
[14] Wu H. N., Chen Q. F., Yue X. Q., Loop Virasoro Lie conformal algebra, J. Math. Phys., 2014, 55(1):199-219.
[15] Xu X. P., Quadratic conformal superalgebras, J. Algebra, 2000, 231(1):1-38.
国家自然科学基金资助项目(11371278,11431010,11101056,11501417,11161010)
/
〈 |
|
〉 |