自仿测度的非谱准则

李建林

数学学报 ›› 2017, Vol. 60 ›› Issue (3) : 361-368.

PDF(475 KB)
PDF(475 KB)
数学学报 ›› 2017, Vol. 60 ›› Issue (3) : 361-368. DOI: 10.12386/A2017sxxb0029
论文

自仿测度的非谱准则

    李建林
作者信息 +

Non-Spectral Criterions for Self-Affine Measures

    Jian Lin LI
Author information +
文章历史 +

摘要

μM,D是由仿射迭代函数系{φdx)=M-1x+d)}dD唯一确定的自仿测度,它的谱性或非谱性与Hilbert空间L2μM,D)中正交指数基(也称为Fourier基)的存在性有着直接的关系.近年来自仿测度μM,D的谱性或非谱性问题的研究受到人们普遍的关注.本文给出了判定自仿测度μM,D非谱性的几个充分条件,所得结果改进推广Dutkay,Jorgensen等人的非谱准则.

Abstract

Let μM,D be the self-affine measure uniquely determined by the iterated function system (IFS){φd(x)=M-1(x+d)}dD with equal weight, where M ∈ Mn(R) is an expanding matrix and DRn is a finite digit set. The spectrality or nonspectrality of μM,D is directly connected with the existence of orthogonal exponential basis (Fourier basis) in the Hilbert space L2(μM,D), and has been received much attention in recent years. In this paper, we provide several sufficient conditions for self-affine measures to be non-spectral. The results here extend the corresponding non-spectral criterions of Dutkay, Jorgensen and others in a simple manner.

关键词

自仿测度 / 非谱性 / 数字集

Key words

self-affine measure / non-spectrality / digit set

引用本文

导出引用
李建林. 自仿测度的非谱准则. 数学学报, 2017, 60(3): 361-368 https://doi.org/10.12386/A2017sxxb0029
Jian Lin LI. Non-Spectral Criterions for Self-Affine Measures. Acta Mathematica Sinica, Chinese Series, 2017, 60(3): 361-368 https://doi.org/10.12386/A2017sxxb0029

参考文献

[1] Brezis Haïm, Analyse Fonctionnelle-Théorie et applications, Masson, Paris, 1983.
[2] Dutkay D. E., Han D., Sun Q., On the spectra of a Cantor measure, Adv. Math., 2009, 221, 251-276.
[3] Dutkay D. E., Jorgensen P. E. T., Analysis of orthogonality and of orbits in affine iterated function systems, Math. Z., 2007, 256:801-823.
[4] Dutkay D. E., Jorgensen P. E. T., Duality questions for operators, spectrum and measures, Acta Appl. Math., 2009, 108:515-528.
[5] Dutkay D. E., Lai C. K., Some reductions of the spectral set conjecture to integers, Math. Proc. Cambridge Philos. Soc., 2014, 156(1):123-135.
[6] Hutchinson J. E., Fractals and self-similarity, Indiana Univ. Math. J., 1981, 30:713-747.
[7] Jorgensen P. E. T., Pedersen S., Dense analytic subspaces in fractal L2-spaces, J. Anal. Math., 1998, 75:185-228.
[8] Laba I., Wang Y., On spectral Cantor measures, J. Funct. Anal., 2002, 193:409-420.
[9] Li J. L., Spectral sets and spectral self-affine measures, Ph. D. Thesis, The Chinese University of Hong Kong, November, 2004.
[10] Li J. L., Non-spectrality of planar self-affine measures with three-element digit set, J. Funct. Anal., 2009, 257:537-552.
[11] Li J. L., Duality properties between spectra and tilings (in Chinese), Sci. Sin. Math., 2010, 40(1):21-32; English translation:Sci. China Math., 2010, 53(5):1307-1317.
[12] Li J. L., On the μM,D-orthogonal exponentials, Nonlinear Anal., 2010, 73:940-951.
[13] Li J. L., Spectrality of a class of self-affine measures with decomposable digit sets, Sci. China Math., 2012, 55:1229-1242.
[14] Li J. L., A necessary and sufficient condition for the finite μM,D-orthogonality, Sci. China Math., 2015, 58:2541-2548.
[15] Strichartz R., Remarks on "Dense analytic subspaces in fractal L2-spaces", J. Anal. Math., 1998, 75:229-231.
[16] Strichartz R., Mock Fourier series and transforms associated with certain Cantor measures, J. Anal. Math., 2000, 81:209-238.

基金

国家自然科学基金资助项目(11571214);中央高校基本科研业务费专项基金(GK201601004)

PDF(475 KB)

Accesses

Citation

Detail

段落导航
相关文章

/