双线性Fourier乘子在Triebel-Lizorkin和Besov空间的有界性
刘茵, 胡国恩, 赵纪满
数学学报 ›› 2017, Vol. 60 ›› Issue (3) : 369-382.
双线性Fourier乘子在Triebel-Lizorkin和Besov空间的有界性
Bilinear Fourier Multiplier Operators on Triebel-Lizorkin and Besov Spaces
本文利用Littlewood-Paley分解,Fourier变换和逆变换等方法,研究了双线性Fourier乘子在非齐次正光滑性Triebel-Lizorkin 空间和 Besov 空间的有界性.
Using the Littlewood-Paley decomposition technique, Fourier transform and inverse Fourier transform, we study the boundedness of bilinear Fourier multiplier operators on the scales of inhomogeneous Triebel-Lizorkin and Besov spaces with positive smoothness.
双线性Fourier 乘子 / Triebel-Lizorkin 空间 / Besov 空间 {{custom_keyword}} /
bilinear Fourier multiplier operators / Triebel-Lizorkin spaces / Besov spaces {{custom_keyword}} /
[1] Bényi Á., Torres R., Symbolic calculus and the transposes of bilinear pseudodifferential operators, Comm. Partial Differential Equations, 2003, 28:1161-1181.
[2] Bernicot F., Germain P., Bilinear oscillatory integrals and boundedness for new bilinear multipliers, Adv. Math., 2010, 225:1739-1785.
[3] Chen L., Lu G., Luo X., Boundedness of multi-parameter Fourier multiplier operators on Triebel-Lizorkin and Besov-Lipschitz spaces, Nonlinear Anal., 2016, 134:55-69.
[4] Coifman R. R., Dobyinsky S., Meyer Y., Opérateurs bilinéaires et renormalization, in Essays on Fourier Analysis in Honor of Elias M. Stein, C. Fefferman, R. Fefferman, S. Wainger (eds), Princeton University Press, Princeton NJ, 1995.
[5] Coifman R. R., Grafakos L., Hardy space estimates for multilinear operators, Rev. Mat. Iberoamer., 1992, 8:45-67.
[6] Coifman R. R., Lions P. L., Meyer Y., et al., Compensated compactness and Hardy spaces, J. Math. Pures et Appl., 1993, 72:247-286.
[7] Coifman R. R., Meyer Y., On commutators of singular integrals and bilinear singular integrals, Trans. Amer. Math. Soc., 1975, 212:315-331.
[8] Coifman R. R., Meyer Y., Au delà des opérateurs pseudo-différentiels, Astérisque 57, 1978.
[9] Coifman R. R., Meyer Y., Commutateurs d'intégrales singulières et opérateurs multilinéaires, Ann. Inst. Fourier (Grenoble), 1978, 28:177-202.
[10] Ding W., Lu G., Duality of multi-parameter Triebel-Lizorkin spaces associated with the composition of two singular integral operators, Trans. Amer. Math. Soc., 2016, 368:7119-7152.
[11] Duoandikoetxea J., Fourier Analysis, Grad. Stud. Math., vol. 29, Amer. Math. Soc., Providence, 2001.
[12] Gilbert J., Nahmod A., Boundedness of bilinear operators with nonsmooth symbols, Math. Res. Lett., 2000, 7:767-778.
[13] Grafakos L., Kalton N., Multilinear Calderón-Zygmund operators on Hardy spaces, Collect. Math., 2001, 52:169-179.
[14] Grafakos L., Kalton N., The Marcinkiewicz multiplier condition for bilinear operators, Studia Math., 2001, 146:115-156.
[15] Grafakos L., Torres R., Multilinear Calderón-Zygmund theory, Adv. Math., 2002, 165:124-164.
[16] Grafakos L., Torres R., Discrete decompositions for bilinear operators and almost diagonal conditions, Trans. Amer. Math. Soc., 2002, 354:1153-1176.
[17] Kenig C., Stein E. M., Multilinear estimates and fractional integrals, Math. Res. Lett., 1999, 6:1-15.
[18] Lacey M., Thiele C., Lp estimates on the bilinear Hilbert transform for 2 < p < ∞, Ann. of Math., 1997, 146:693-724.
[19] Lacey M., Thiele C., On Calderón's conjecture, Ann. of Math., 1999, 149:475-496.
[20] Musealu C., Tao T., Thiele C., Multi-linear operators given by singular multipliers, J. Amer. Math. Soc., 2002, 15:469-496.
[21] Naibo V., On the bilinear Hörmander classes in the scales of Triebel-Lizorkin and Besov spaces, J. Fourier Anal. Appl., 2015, 21:1077-1104.
[22] Runst T., Pseudodifferential operators of the "exotic" class L1,10 in spaces of Besov and Triebel-Lizorkin type, Ann. Glob. Anal. Geom., 1985, 3:13-28.
[23] Tomita N., A Hörmander type multiplier theorem for multilinear operators, J. Funct. Anal., 2010, 259:2028-2044.
[24] Triebel H., Theory of Function Spaces, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 2010.
[25] Yabuta K., A multilinearization of Littlewood-Paley's g-function and Carleson measures, Tôhoku Math. J., 1982, 34:251-275.
[26] Yang D., Zhuo C., Yuan W., Besov-type spaces with variable smoothness and integrability, J. Funct. Anal., 2015, 269:1840-1898.
[27] Youssfi A., Bilinear operators and the Jacobian-determinant on Besov spaces, Indiana. Univ. Math. J., 1996, 45:381-396.
[28] Yuan W., Sickel W., Yang D., Morrey and Campanato Meet Besov, Lizorkin and Triebel, Lecture Notes in Mathematics, 2005, Springer-Verlag, Berlin, 2010.
国家自然科学基金资助项目(11471040,11371370);中央高校基本科研基金(2014KJJCA10)
/
〈 | 〉 |