
带谱参数边界条件的四阶边值问题的矩阵表示
Matrix Representations of Fourth Order Boundary Value Problems with Eigenparameter-Dependent Boundary Conditions
研究了一类具有有限谱的带有谱参数边界条件的四阶微分方程边值问题及其矩阵表示,证明了对任意正整数m,所考虑的问题至多有2m+6个特征值,进一步给出这类带有谱参数边条件的四阶边值问题与一类矩阵特征值问题之间在具有相同特征值的意义下是等价的.
The matrix representations of a class of fourth order boundary value problems with eigenparameter-dependent boundary conditions which have a finite spectrum are investigated. We first prove that for any positive integer m, the considered problem has at most 2m + 6 eigenvalues. Next, we show that this fourth order boundary value problem with eigenparameter-dependent boundary condition is equivalent to a class of matrix eigenvalue problem in the sense that they have exactly the same eigenvalues.
四阶边值问题 / 矩阵特征值问题 / 谱参数边条件 / 有限谱 {{custom_keyword}} /
fourth order boundary value problems / matrix eigenvalue problems / eigenparameter-dependent boundary conditions / finite spectrum {{custom_keyword}} /
[1] Akdo?an Z., Demirci M., Mukhtarov O. Sh., Green function of discontinuous boundary-value problem with transmission conditions, Math. Meth. Appl. Sci., 2007, 30:1719-1738.
[2] Ao J. J., Bo F. Z., Sun J., Fourth order boundary value problems with finite spectrum, Appl. Math. Comput., 2014, 244:952-958.
[3] Ao J. J., Sun J., Matrix representations of fourth order boundary value problems with coupled or mixed boundary conditions, Linear Multilinear Algebra, 2015, 63:1590-1598.
[4] Ao J. J., Sun J., Matrix representations of Sturm-Liouville problems with coupled eigenparameter-dependent boundary conditions, Appl. Math. Comput., 2014, 244:142-148.
[5] Ao J. J., Sun J., The matrix representations of Sturm-Liouville problems with eigenparameter-dependent boundary conditions, Linear Algebra Appl., 2013, 438:2359-2365.
[6] Ao J. J., Sun J., Zhang M. Z., The finite spectrum of Sturm-Liouville problems with transmission conditions and eigenparameter-dependent boundary conditions, Result. Math., 2013, 63:1057-1070.
[7] Ao J. J., Sun J., Zettl A., Matrix representations of fourth order boundary value problems with finite spectrum, Linear Algebra Appl., 2012, 436:2359-2365.
[8] Ao J. J., Sun J., Zettl A., Equivalence of fourth order boundary value problems and matrix eigenvalue problems, Result. Math., 2013, 63:581-595.
[9] Atkinson F. V., Discrete and Continuous Boundary Problems, Academic Press, New York/London, 1964.
[10] Binding P. A., Browne P. J., Watson B. A., Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter, II, J. Comp. Appl. Math., 2002, 148:147-168.
[11] Binding P. A., Browne P. J., Watson B. A., Inverse spectral problems for Sturm-Liouville equations with eigenparameter dependent boundary conditions, J. London Math. Soc., 2000, 62(1):161-182.
[12] Chanane B., Accurate solutions of fourth order Sturm-Liouville problems, J. Comp. Appl. Math., 2010, 234:3064-3071.
[13] Everitt W. N., Race D., On necessary and sufficient conditions for the existence of Caratheodory solutions of ordinary differential equations, Quaest. Math., 1976, 3:507-512.
[14] Fulton C., Pruess S., Numerical methods for a singular eigenvalue problem with eigenparameter in the boundary conditions, J. Math. Anal. Appl., 1979, 71:431-462.
[15] Greenberg L., Marletta M., Numerical methods for higher order Sturm-Liouville problems, J. Comp. Appl. Math., 2000, 125:367-383.
[16] Kong Q., Wu H., Zettl A., Sturm-Liouville problems with finite spectrum, J. Math. Anal. Appl., 2001, 263:748-762.
[17] Kong Q., Volkmer H., Zettl A., Matrix representations of Sturm-Liouville problems with finite spectrum, Result. Math., 2009, 54:103-116.
[18] Naimark M. A., Linear Differential Operators, English Transl. Ungar, New York, 1968.
[19] Zettl A., Sturm-Liouville Theory, Amer. Math. Soc., Mathematical Surveys and Monographs 121, Providence RI, 2005.
国家自然科学基金资助项目(11301259,11661059);内蒙古自然科学基金资助项目(2013MS0105)
/
〈 |
|
〉 |