
一类特殊的Koszul Calabi-Yau DG代数
A Special Class of Koszul Calabi-Yau DG Algebras
假设一个连通上链DG代数A的基分次代数A#或者同调分次代数H(A)是由一次元素x,y生成的代数k<x,y>/(xy+yx). 本文证明A是Koszul Calabi-Yau DG代数.
It is proved in this paper that a connected cochain DG algebra A is a Koszul Calabi-Yau DG algebra if either its cohomology graded algebra H(A) or its underlying graded algebra A# is the algebra k<x,y>/(xy+yx) generated by degree 1 elements x,y.
Koszul / Calabi-Yau / 微分分次代数 {{custom_keyword}} /
[1] Avramov L. L., Foxby H. B., Halperin S., Differential graded homological algebra (in Preparation).
[2] Beck K. A., On the image of the totaling functor, arxiv:math. CT/1105.3869 v1.
[3] Dwyer W. G., Greenlees J. P. C., Iyengar S. B., DG algebras with exterior homology, Bull. London Math. Soc., 2013, 45:1235-1245.
[4] Félix Y., Halperin S., Thomas J. C., Gorenstein spaces, Adv. Math., 1988, 71:92-112.
[5] Félix Y., Halperin S., Thomas J. C., Rational Homotopy Theory, Grad., Texts in Math. 205, Springer, Berlin, 2000.
[6] Frankild A., Jørgensen P., Gorenstein differential graded algebras, Israel J. Math., 2003, 135:327-353.
[7] Frankild A., Jørgensen P., Dualizing differential graded modules and gorenstein differential graded algebras, J. London Math. Soc., 2003, 68(2):288-306.
[8] Félix Y., Murillo A., Gorenstein graded algebras and the evaluation map, Canad. Math. Bull., 1998, 41:28-32.
[9] Gammelin H., Gorenstein space with nonzero evaluation map, Trans. Amer. Math Soc., 1999, 351:3433-3440.
[10] Ginzberg V., Calabi-Yau algebra, arxiv:math. AG/0612.139 v3.
[11] He J. W., Mao X. F., Connected cochain DG algebras of Calabi-Yau dimension 0, Proc. Amer. Math. Soc. DOI:10.1090/proc/13081
[12] He J. W., Wu Q. S., Koszul differential graded algebras and BGG correspondence, J. Algebra, 2008320:2934-2962.
[13] Jørgensen P., Duality for cochain DG algebras, Sci. China Math., 2013, 56:79-89.
[14] Mao X. F., Wu Q. S., Homological invariants for connected DG algebra, Comm. Algebra, 2008, 36:3050-3072.
[15] Mao X. F., Wu Q. S., Compact DG modules and Gorenstein DG algebra, Sci. China Math., 2009, 52:711-740.
[16] Mao X. F., DG algebra structures on AS-regular algebras of dimension 2, Sci. China Math., 2011, 54:2235-2248.
[17] Schmidt K., Families of Auslander-Reiten theory for simply connected differential graded algebras, Math. Z., 2010, 264:43-62.
[18] Van den Bergh M. M., Calabi-Yau algebras and superpotentials, Sel. Math. New Ser., 2015, 21:555-603.
国家自然科学基金资助项目(11571239,11001056)
/
〈 |
|
〉 |