含参数加权极大Lebesgue空间中次线性算子的有界性质

张蕾, 石少广, 郑庆玉

数学学报 ›› 2017, Vol. 60 ›› Issue (3) : 521-530.

PDF(484 KB)
PDF(484 KB)
数学学报 ›› 2017, Vol. 60 ›› Issue (3) : 521-530. DOI: 10.12386/A2017sxxb0042
论文

含参数加权极大Lebesgue空间中次线性算子的有界性质

    张蕾, 石少广, 郑庆玉
作者信息 +

On the Boundednesss of Sublinear Operators on Weighted Grand Lebesgue Space with Parameter

    Lei ZHANG, Shao Guang SHI, Qing Yu ZHENG
Author information +
文章历史 +

摘要

引进一类含参数加权极大Lebesgue空间并得到满足一定尺寸条件的次线性算子在该类空间中的有界性质.特别地,还考虑了该类空间上次线性算子与BMO函数生成交换子的相应有界性质.

Abstract

A version of weighted grand Lebesgue space with parameter is introduced. The boundedness of sublinear operators under certain size conditions on these spaces are discussed. Particularly, the corresponding results for the commutators formed by certain sublinear operators and BMO functions are also considered.

关键词

含参数加权极大 Lebesgue 空间 / 次线性算子 / 交换子

Key words

Weighted grand Lebesgue space with parameter / sublinear operator / commutator

引用本文

导出引用
张蕾, 石少广, 郑庆玉. 含参数加权极大Lebesgue空间中次线性算子的有界性质. 数学学报, 2017, 60(3): 521-530 https://doi.org/10.12386/A2017sxxb0042
Lei ZHANG, Shao Guang SHI, Qing Yu ZHENG. On the Boundednesss of Sublinear Operators on Weighted Grand Lebesgue Space with Parameter. Acta Mathematica Sinica, Chinese Series, 2017, 60(3): 521-530 https://doi.org/10.12386/A2017sxxb0042

参考文献

[1] Bandaliev R., The boundedness of certain sublinear operator in the weighted variable Lebesgue spaces, Czechoslovak Math. J., 2010, 60:327-337.
[2] Capone C., Fiorenza A., On small Lebesgue spaces, J. Funct. Spaces Appl., 2005, 3:73-89.
[3] Coifman R., Rochberg R., Weiss G., Factorization theorems for Hardy spaces in several variables, Ann. of Math., 1976, 103:611-635.
[4] Chang C., Yang D. C., Zhou Y., Boundedness of sublinear operators on product Hardy spaces and its application, J. Math. Soc. Japan, 2010, 62:321-353.
[5] Ding Y., Yang D. C., Zhou Z., Boundedness of sublinear operators and commutators on Lp,w(Rn), Yokohama Math. J., 1998, 46:15-27.
[6] Fan D. S., Lu S. Z., Yang D. C., Regularity in Morry spaces of strong solutions to nondivergence elliptic equations with VMO coefficients, Georgian Math. J., 1998, 5:425-440.
[7] Fiorenza A., Duality and reflexivity in grand Lebesgue spaces, Collect. Math., 2000, 51:131-148.
[8] Fiorenza A., Gupta B., Jain P., The maximal theorem in weighted grand Lebesgue spaces, Studia Math., 2008, 188:123-133.
[9] Fiorenza A., Karadzhov G., Grand and small Lebesgue spaces and their analogs, Zeitschrift für Analysis und ihre Anwendungen, J. Anal. Appl., 2004, 23:657-681.
[10] Fiorenza A., Krbec M., On the domain and range of the maximal operator, Nagoya Math. J., 2000, 158:43-61.
[11] Fiorenza A., Sbordone C., Existence and uniqueness results for solutions of nonlinear equations with right hand side in L1, Studia Math., 1998, 127:223-231.
[12] García-Cuerva J., Rubio de Francia J., Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud., North-Holland, Amsterdam, 1985.
[13] Grafakos L., Classical and Modern Fourier Analysis, Pearson Education, New York, 2004.
[14] Greco L., Iwaniec T., Sbordone C., Inverting the p-harmonic operator, Manuscripta Math., 1997, 92:249-258.
[15] Hernandez E., Yang D. C., Interpolation of Herz spaces and applications, Math. Nachr., 1999, 205:69-87.
[16] Iwaniec T., Sbordone C., On the integrability of the Jacobian under minimal hypotheses, Arch. Ration. Mech. Anal., 1992, 119:129-143.
[17] Kokilashvili V., Meskhi A., A note on the boundedness of the Hilbert transform in weighted grand Lebesgue spaces, Georgian Math. J., 2009, 16:547-551.
[18] Kokilashvili V., Meskhi A., Trace inequalities for integral operators with fractional order in grand Lebesgue spaces, Studia Math., 2012, 210:159-176.
[19] Kokilashvili V., Boundedness criteria for singular integrals in weighted grand Lebesgue spaces, J. Math. Sci., 2010, 170:20-33.
[20] Li X. W., Yang D. C., Boundedness of some sublinear operators on Herz spaces, Illinois J. Math., 1996, 40:484-501.
[21] Lu S. Z., Yang D. C., Hu G. E., Herz Type Spaces and Their Applications, Science press, Beijing, 2008.
[22] Lu S. Z., Yang D. C., Zhou Z., Sublinear operators with rough kernel on generalized Morrey spaces, Hokkaido Math. J., 1998, 27:219-232.
[23] Lu G. Z., Lu S. Z., Yang D. C., Singular integrals and commutators on homogeneous groups, Anal. Math., 2002, 28:103-134.
[24] Muckenhoupt B., Wheeden R., Weighted bounded mean oscillation and the Hilbert transform, Studia Math., 1976, 54:221-237.
[25] Pérez C., Endpoint estimates for commutators of singular integral operators, J. Funct. Anal., 1995, 128:163-185.
[26] Ricci F., Stein E., Harmonic analysis on nilpotent groups and singular integrals I:Oscillatory Integrals, J. Funct. Anal., 1987, 73:179-194.
[27] Samko S., Umarkhadzhiev S., On Iwaniec-Sbordone spaces on sets which may have infinite measure, Azerbaijan J. Math., 2011, 1:67-84.
[28] Segovia C., Tottra J., Weighted inequalities for commutators of fractional and singular integrals, Publ. Mat., 1991, 35:209-235.
[29] Shi S. G., Fu Z. W., Lu S. Z., Boundedness of oscillatory integral operators and their commutators on weighted Morrey spaces (in Chinese), Sci. Sin. Math., 2013, 43:147-158.
[30] Shi S. G., Fu Z. W., Zhao F. Y., Estimates for operators on weighted Morrey spaces and their applications to nondivergence elliptic equations, J. Inequal. Appl., 2013, 390.
[31] Soria F., Weiss G., A remark on singular integrals and power weights, Indiana Univ. Math. J., 1994, 43:187-204.

基金

国家自然科学基金资助项目(11301249,11271175)

PDF(484 KB)

Accesses

Citation

Detail

段落导航
相关文章

/