
右半直线上依分布收敛的独立随机环境中的生灭过程的常返性
Recurrence of Birth and Death Process in an Independent Random Environment Convergence in Distribution on the Half-Line
讨论了一类独立随机环境中的生灭过程的常返性.在假定环境满足一定的条件下证明一个强大数定律,并应用此大数定律给出了该生灭过程的常返和非常返的判别准则.
We discuss the recurrence of birth and death process in a class of random environments. Under some special conditions, a strong law of large number is proven, and then applied it to discuss its recurrence and transience.
随机环境 / 生灭过程 / 常返 / 非常返 {{custom_keyword}} /
random environments / birth and death process / recurrence / transience {{custom_keyword}} /
[1] Chung K., A Course in Probability Theory, Second Edition Academicpress, Inc., 1974.
[2] Hughes B. D. S., Prager, Random processes and random systems, Lectures Notes in Mathematics, 1035.
[3] Kozlov M. V., Random walk in a one dimensional random medium, Theory Prob. Appl., 1973, 18:387-388.
[4] Loève M., Probability Theory I, Springer-Verlerg, New York, 1977.
[5] Ritter G., A continuous time analogue of random walk in random environments, J. Appl. Prob., 1980, 17(1):259-264.
[6] Solomon F., Random walk in a random environment, Ann. Prob., 1975, 3:1-31.
[7] Wang R. M., On the markov property of Birth-Death chainss of 2 order in a random environment, J. Anhui Normal University, 1992, 2:11-18.
[8] Wang R. M., Some properties of a class of correlated random walks, J. engineering Mathematics, 1992, 9(2):69-74.
[9] Wang R. M., Recurrence of single side birth death chain in a classof a random environment, Mathematical Statistics and Applied Probability, 1995, 10(3):8-14.
[10] Yang X. Q., Construction Theory of Countable Markov Processes, Hunan Science and Technology Presss, 1981, 6.
国家自然科学基金资助项目(11371029);安徽省高校自然科学研究项目(KJ2016A770);安徽省优秀青年人才支持计划重点项目(gxyqZD2016340);宿州学院教学研究项目(szxy2015jy09);宿州学院重点科研项目(2016yzd05)
/
〈 |
|
〉 |