M-矩阵线性互补问题模系多分裂迭代方法的收敛性

张丽丽, 任志茹

数学学报 ›› 2017, Vol. 60 ›› Issue (4) : 547-556.

PDF(526 KB)
PDF(526 KB)
数学学报 ›› 2017, Vol. 60 ›› Issue (4) : 547-556. DOI: 10.12386/A2017sxxb0045
论文

M-矩阵线性互补问题模系多分裂迭代方法的收敛性

    张丽丽1, 任志茹2
作者信息 +

Convergence of Modulus-based Multisplitting Iteration Methods for Linear Complementarity Problems with M-matrices

    Li Li ZHANG1, Zhi Ru REN2
Author information +
文章历史 +

摘要

首先证明了M-矩阵的H-相容分裂都是正则分裂,反之不成立.这表明对于M-矩阵而言,其正则分裂包含H-相容分裂.然后针对系数矩阵为M-矩阵的线性互补问题,建立了两个收敛定理:一是模系多分裂迭代方法关于正则分裂的收敛定理;二是模系二级多分裂迭代方法关于外迭代为正则分裂和内迭代为弱正则分裂的收敛定理.

Abstract

For M-matrix,we prove that its H-compatible splitting is the regular splitting,but not vice versa.This indicates that the regular splittings of M-matrix contain all H-compatible splittings.For the linear complementarity problems with M-matrices,we establish two convergence theorems:one is that of the modulus-based multisplitting iteration method with regular splittings,the other is that of the modulus-based twostage multisplitting iteration method with regular splittings for outer iterations and weak regular splittings for inner iterations.

关键词

线性互补问题 / 模系方法 / 多分裂 / 收敛性

Key words

linear complementarity problem / modulus-based method / multisplitting / convergence

引用本文

导出引用
张丽丽, 任志茹. M-矩阵线性互补问题模系多分裂迭代方法的收敛性. 数学学报, 2017, 60(4): 547-556 https://doi.org/10.12386/A2017sxxb0045
Li Li ZHANG, Zhi Ru REN. Convergence of Modulus-based Multisplitting Iteration Methods for Linear Complementarity Problems with M-matrices. Acta Mathematica Sinica, Chinese Series, 2017, 60(4): 547-556 https://doi.org/10.12386/A2017sxxb0045

参考文献

[1] Bai Z. Z., On the convergence of the multisplitting methods for the linear complementarity problem, SIAM J. Matrix Anal. Appl., 1999, 21(1):67-78.
[2] Bai Z. Z., Modulus-based matrix splitting iteration methods for linear complementarity problems, Numer. Linear Algebra Appl., 2010, 17(6):917-933.
[3] Bai Z. Z., Sun J. C., Wang D. R., A unified framework for the construction of various matrix multisplitting iterative methods for large sparse system of linear equations, Comput. Math. Appl., 1996, 32(12):51-76.
[4] Bai Z. Z., Zhang L. L., Modulus-based synchronous multisplitting iteration methods for linear complementarity problems, Numer. Linear Algebra Appl., 2013, 20(3):425-439.
[5] Bai Z. Z., Zhang L. L., Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems, Numer. Algorithms, 2013, 62(1):59-77.
[6] Berman A., Plemmons R. J., Nonnegative Matrices in the Mathematical Sciences, New York:Academic Press, 1979.
[7] Cottle R. W., Pang J. S., Stone R. E., The Linear Complementarity Problem, San Diego:Academic Press, 1992.
[8] Cvetkovi? L., Kosti? V., A note on the convergence of the MSMAOR method for linear complementarity problems, Numer. Linear Algebra Appl., 2014, 21(4):534-539.
[9] Dong J. L., Jiang M. Q., A modified modulus method for symmetric positive-definite linear complementarity problems, Numer. Linear Algebra Appl., 2009, 16(2):129-143.
[10] Ferris M. C., Pang J. S., Engineering and economic applications of complementarity problems, SIAM Rev., 1997, 39(4):669-713.
[11] Frommer A., Szyld D. B., H-splittings and two-stage iterative methods, Numer. Math., 1992, 63(1):345-356.
[12] Hadjidimos A., Lapidakis M., Tzoumas M., On iterative solution for linear complementarity problem with an H+-matrix, SIAM J. Matrix Anal. Appl., 2012, 33(1):97-110.
[13] Li W., A general modulus-based matrix splitting method for linear complementarity problems of H-matrices, Appl. Math. Lett., 2013, 26(12):1159-1164.
[14] Li W., Zheng H., Some new error bounds for linear complementarity problems of H-matrices, Numer. Algorithms, 2014, 67(2):257-269.
[15] Lin Y., Cryer C. W., An alternating direction implicit algorithm for the solution of linear complementarity problems arising from free boundary problems, Appl. Math. Optim., 1985, 13(1):1-17.
[16] van Bokhoven W. M. G., Piecewise-Linear Modelling and Analysis, Eindhoven:Proefschrift, 1981.
[17] Xu W. W., Modified modulus-based matrix splitting iteration methods for linear complementarity problems, Numer. Linear Algebra Appl., 2015, 22(4):748-760.
[18] Zhang L. L., Two-step modulus-based matrix splitting iteration method for linear complementarity problems, Numer. Algorithms, 2011, 57(1):83-99.
[19] Zhang L. L., Two-stage multisplitting iteration methods using modulus-based matrix splitting as inner iteration for linear complementarity problems, J. Optim. Theory Appl., 2014, 160(1):189-203.
[20] Zhang L. L., Two-step modulus-based synchronous multisplitting iteration methods for linear complementarity problems, J. Comput. Math., 2015, 33(1):100-112.
[21] Zhang L. T., Li J. L., The weaker convergence of modulus-based synchronous multisplitting multi-parameters methods for linear complementarity problems, Comput. Math. Appl., 2014, 67(10):1954-1959.
[22] Zhang L. L., Ren Z. R., Improved convergence theorems of modulus-based matrix splitting iteration methods for linear complementarity problems, Appl. Math. Lett., 2013, 26(6):638-642.
[23] Zheng N., Yin J. F., Accelerated modulus-based matrix splitting iteration methods for linear complementarity problem, Numer. Algorithms, 2013, 64(2):245-262.
[24] Zheng N., Yin J. F., Modulus-based successive overrelaxation method for pricing American options, J. Appl. Math. Inform., 2013, 31(5/6):769-784.
[25] Zheng N., Yin J. F., Convergence of accelerated modulus-based matrix splitting iteration methods for linear complementarity problem with an H+-matrix, J. Comput. Appl. Math., 2014, 260:281-293.

基金

国家自然科学基金资助项目(11301141,11301521);河南省高等学校青年骨干教师资助计划(2015GGJS-006)及河南省科技攻关项目(162102310385,152102310089)

PDF(526 KB)

356

Accesses

0

Citation

Detail

段落导航
相关文章

/