单形积上的Sobolev类逼近问题的易处理性

许贵桥

数学学报 ›› 2017, Vol. 60 ›› Issue (4) : 605-618.

PDF(524 KB)
PDF(524 KB)
数学学报 ›› 2017, Vol. 60 ›› Issue (4) : 605-618. DOI: 10.12386/A2017sxxb0050
论文

单形积上的Sobolev类逼近问题的易处理性

    许贵桥
作者信息 +

Tractability of Approximation Problems in Sobolev Classes Definied over Products of Simplices

    Gui Qiao XU
Author information +
文章历史 +

摘要

我们在最大框架下研究定义于单纯形Td⊂Rdm重积上的Sobolev类逼近问题的易处理性.对于信息类Λall,得到了问题具有几种易处理性相匹配的充要条件,结果是依赖于问题参数的.本文是相应积分问题的继续研究.

Abstract

We aimed to investigate tractability of the approximation problems of Sobolev classes of functions defined over the product of m copies of the simplex T d ⊂ Rd in the worst case setting.We obtained the matching necessary and sufficient conditions for some notions of tractability in terms of the parameters of the problem for the class Λall.It is a further study of the corresponding integral problems.

关键词

易处理性 / Sobolev类 / 单形 / 特征值 / 最大框架

Key words

tractability / Sobolev class / simplex / eigenvalue / worst case setting

引用本文

导出引用
许贵桥. 单形积上的Sobolev类逼近问题的易处理性. 数学学报, 2017, 60(4): 605-618 https://doi.org/10.12386/A2017sxxb0050
Gui Qiao XU. Tractability of Approximation Problems in Sobolev Classes Definied over Products of Simplices. Acta Mathematica Sinica, Chinese Series, 2017, 60(4): 605-618 https://doi.org/10.12386/A2017sxxb0050

参考文献

[1] Aktas R., Xu Y., Sobolev orthogonal polynomials on a simplex, Int. Math. Res. Notices, 2013, 13:3087-3131.
[2] Basu K., Quasi-Monte Carlo tractability of high dimensional integration over products of simplices, J. Complexity, 2015, 31(6):817-834.
[3] Basu K., Owen A. B., Low-discrepancy constructions in the triangle, SIAM J. Numer. Anal., 2015, 53(2):743-761.
[4] Brandolini L., Colzani L., Gigante G., et al., A Koksma-Hlawka Inequality for Simplices, In:Trends in Harmonic Analysis, Springer, INdAM Series, Vol. 3, Itali, 2013:33-46.
[5] Dunkl C. F., Xu Y., Orthogonal Polynomials of Several Variables, Vol. 155, Cambridge University Press, New York, NY, 2014.
[6] Gnewuch M., Wó zniakowski H., Quasi-polynomial tractability, J. Complexity, 2011, 27:312-330.
[7] Kuo F. Y., Sloan I. H., Quasi-Monte Carlo methods can be efficient for integration over products of spheres, J. Complexity, 2005, 21(2):196-210.
[8] Novak E., Wó zniakowski H.,, Tractability of Multivariate Problems, volume I:Linear Information, in:EMS Tracts in Mathematics, vol. 6, Zürich, 2008.
[9] Novak E., Wó zniakowski H., Tractability of Multivariate Problems, volume Ⅱ:Standard Information for functionals, in:EMS Tracts in Mathematics, vol. 12, Zürich, 2010.
[10] Novak E., Wó zniakowski H., Tractability of Multivariate Problems, volume Ⅲ:Standard Information for Operator, in:EMS Tracts in Mathematics, vol.18, Zürich, 2012.
[11] Pillards T., Cools R., Transforming low-discrepancy sequences from a cube to a simplex, J. Comput. Appl. Math., 2005, 174(1):29-42.
[12] Pillards T., Cools R., A theoretical view on transforming low-discrepancy sequences from a cube to a simplex, Monte Carlo Meth. and Appl., 2004, 10(3/4):511-529.
[13] Siedlecki P., Weimar M., Notes on (s, t)-weak tractability:A refined classification of problems with (sub)exponential information complexity, J. Approx. Theory, 2015, 200:227-258.
[14] Wó zniakowski H., Tractability and strong tractability of multivariate tensor product problems, J. Complexity, 1994, 10:96-128.
[15] Xu Y., Analysis on the unit ball and on the simplex, Electron. T. Numer Ana., 2006, 25:284-301.

基金

国家自然科学基金资助项目(11471043,11671271)

PDF(524 KB)

225

Accesses

0

Citation

Detail

段落导航
相关文章

/